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Abstract of Dissertation  

 

Use of Increasing Fidelity and Surrogate Models to Reduce the  

Cost of Developing Physics-Based Systems 

 

ABSTRACT:  

Building complex physics-based systems in a timely cost-effective manner, that 

perform well, meet diverse user needs, and have no bad emergent behaviors is a challenge. 

To meet these requirements the solution is to model the physics-based system before 

building it. Modeling and Simulation capabilities for these type systems have advanced 

continuously during the past 20 years thanks to progress in the application of high fidelity 

computational codes that are able to model the real physical performance of system 

components. The problem is that it is often too time consuming and costly to model 

complex systems, end-to-end, using these high fidelity computational models alone. 

Missing are good approaches to segment the modeling of complex systems performance 

and behaviors, keep the model chain coherent and only model what is necessary. Current 

research efforts have shown that using multi-fidelity and/or surrogate models might offer 

alternative methods of performing the modeling and simulations needed to design and 

develop physics-based systems more efficiently. This study demonstrates that it is possible 

reduce the number of high fidelity runs allowing the use of classical systems engineering 

analysis and tools that would not be possible if only high fidelity codes were employed. 

This study advances the systems engineering of physics-based systems by reducing the 

number of time consuming high fidelity models and simulations that must be used to design 

and develop the systems. The study produced a novel approach to the design and 
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development of complex physics-based systems by using a mix of variable fidelity physics-

based models and surrogate models. It shows that this combination of increasing fidelity 

models enables the computationally and cost efficient modeling and simulation of these 

complex systems and their components. The study presents an example of the methodology 

for the analysis and design of two physics-based systems: a Ground Penetrating Radar 

(GPR) and a Nuclear Electromagnetic Pulse Bounded Wave System. 

 

Index Terms- Systems Engineering, Multi-fidelity Models, Surrogate Models, FDTD, 

Kriging  
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Chapter 1 - Introduction 

Systems engineering of complex systems is challenged by the cost and complexity 

of modeling the performance of component physical systems that contribute to the 

understanding of higher, system level performance. It is not realistic to model a system 

with a single detailed high fidelity model; a series of models of multiple fidelities is 

required. This is particularly true of complex electromagnetic systems and other physics-

based systems. “Mathematical models in which the equations that constitute the model are 

those used in physics to describe or define the physical phenomenon being modeled are 

referred to as physics-based models.” [National Research Council 2002] These complex 

physics-based systems are physical systems that are controlled and driven by physical laws 

(i.e complex electromagnetic systems and Maxwell’s Laws/Equations). There is an 

increase in the use of high fidelity models based on proven accurate Computational Fluid 

Dynamics (CFD) and Computational Electromagnetic (CEM) codes to optimize system 

parameters, explore complex system designs and evaluate a system’s output responses to 

changes. Due to the expense in time and resources to run these high fidelity models, many 

approaches or frameworks using multi-fidelity models or surrogate models, that reduce 

computational time and expense, are being researched. Such a framework is proposed and 

used to investigate the effects of inputs parameters to the performance of a ground 

penetrating radar (GPR) and to solve a systems engineering problem that required the 

modification of a nuclear electromagnetic pulse (NEMP) bounded wave system (BWS). 

This paper presents details about their investigation and the problems that were solved, the 

systems engineering processes that were followed, and the modeling approaches that were 

used. For both processes, this dissertation presents a novel framework that uses time 
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efficient models with differing fidelities where the interfaces provide a source of 

performance parametrics and a balance between the performance of components with that 

of the overall system and surrogate models to reduce computation times. 

The primary focus of this study is to reduce the cost, time, and resources needed to 

perform development and design related modeling and simulations of physics-based 

systems and thereby allow the use of standard systems engineering (SE) tools. The 

International Council on Systems Engineering (INCOSE) defines systems engineering as 

“an interdisciplinary approach and means to enable the realization of successful systems. 

It focuses on defining customer needs and required functionality early in the development 

cycle, documenting requirements, then proceeding with design synthesis and system 

validation while considering the complete problem.” [INCOSE 2011] Bahill and Dean 

present the process as comprised of the following seven tasks: 

 State the problem. Stating the problem is the most important systems engineering 

task. It entails identifying customers, understanding customer needs, establishing 

the need for change, discovering requirements and defining system functions. 

 Investigate alternatives. Alternatives are investigated and evaluated based on 

performance, cost and risk. 

 Model the system. Running models clarifies requirements, reveals bottlenecks and 

fragmented activities, reduces cost and exposes duplication of efforts. 

 Integrate. Integration means designing interfaces and bringing system elements 

together so they work as a whole. This requires extensive communication and 

coordination. 

 Launch the system. Launching the system means running the system and 

producing outputs -- making the system do what it was intended to do. 

 Assess performance. Performance is assessed using evaluation criteria, technical 

performance measures and measures -- measurement is the key. If you cannot 

measure it, you cannot control it. If you cannot control it, you cannot improve it. 



www.manaraa.com

 

3 
 

 Re-evaluation. Re-evaluation should be a continual and iterative process with 

many parallel loops. [Bahill and Dean 2009] 

This study concentrates on the third of the seven tasks (model the system) that 

comprise the simplified systems engineering life cycle process illustrated in Figure 1. 

 

Figure 1. The Systems Engineering Life-Cycle Process [Bahill and Dean 2009] 

Many believe that models can be representations of the real world and simulations 

allow the model to provide predictions or investigations of a system’s real world behavior 

over time. Because of this notion, modeling and simulation (M&S) are prevalent in the 

majority of systems engineering endeavors. A definition of “system” was developed by the 

INCOSE: “A system is a construct or collection of different elements that together produce 

results not obtainable by the elements alone.” [INCOSE 2007] Their definition extends 

M&S to a long list of elements, some physics-based, e.g. governed by the laws of physics, 

and others whose elements include people, software, policies, documents, etc. The military 

and defense domain, in particular within the United States, has been the main M&S 

champion, in the form of funding as well as application of M&S, in modern military 

organizations is part of the acquisition/procurement strategy. Specifically, M&S is used to 

conduct events and experiments that influence requirements and training for military 

systems. As such, M&S is considered an integral part of systems engineering of military 

systems. Other application domains, however, are currently catching up. M&S in the fields 

of medicine, transportation, and other industries is poised to rapidly outstrip the 
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Department of Defense’s (DoD) use of M&S in the years ahead, if it has not already 

happened. [Collins et al. 2011] A number of these domains are illustrated in Figure 2. 

 

Figure 2. Example of Modeling and Simulation in Systems Engineering [Banks 2009] 

1.0 Physics-Based Models 

 

Physics-based models are controlled and driven by physical laws (e.g. Maxwell’s 

Laws and Equations for EM models, and Navier–Stokes equations for fluid dynamics 

models). Systems engineering of complex physics-based systems is challenged by the cost 

and complexity of modeling individual component system performance and higher system 

level performance. Full scale high-fidelity (HF) simulations based upon well-established 

computational physics-based codes now play a major role in the design, development, and 

test planning of complex physical systems. “Such system analysis codes play a central role 

in the design process since they aid designers and scientists in validating new designs and 

studying the effect of altering key parameters on product and/or system performance.” 

[Lim 2010] As these models became more precise, they also became more expensive in 

terms of computational time. Studies have shown that complex system simulations using 
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expensive HF engineering codes may be unfeasible or take hours to days to run, even on 

the most capable super computers. [Andres 2014; Forrester et al., 2008; Simpson et al., 

2008] New and efficient approaches are needed to reduce the run times for these high 

fidelity models; particularly when the design requires reverse engineering, evolutionary 

development, or system optimization. A framework that reduces the time and cost of these 

simulation runs should appeal to systems engineers because it enables them to use well 

proven statistical and other SE analysis tools for the design and development of complex 

physics-based systems.  

Turner states that optimal engineering designs are difficult problems to solve. He 

explains that “Often, the optimization problem is difficult to formulate, and if it can be 

formulated, the number of design variables is often substantial, the design variables may 

be continuous, discontinuous or discrete, the relationships between design variables and 

performance indices is generally nonlinear, and the optimization problem involves multiple 

competing objectives. As if complex, nonlinear, hyper dimensional and multi-objective 

optimization problems were not difficult enough, “real” designs must also be manufactured 

in a world where exact tolerances are generally not achievable, and therefore robust-

optimal design solutions are a true measure of optimality. However, the problem is not 

hopeless, as it is ever more feasible to solve the “approximate” problem via surrogate 

modeling methods.” [Turner 2014] 

Gorissen, et al. stated that “Computer based simulation has become an integral part 

of the engineering design process. Rather than building real world prototypes and 

performing experiments, application scientists can build a computational model and 

simulate the physical processes at a fraction of the original cost. Despite continual advances 
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in computing power, the complexity of analysis codes, such as finite element analysis and 

CFD, seem to keep pace with computing advances. [Gorissen et al. 2007]  

To put numbers on this problem, Wang found “...it is reported that it takes Ford 

Motor Company about 36-160 hours to run one crash simulation. [Wang 2006] and Gu et 

al. found “…for a two-variable optimization problem, assuming on average 50 iterations 

are needed by optimization and assuming each iteration needs one crash simulation, the 

total computation time would be 75 days to 11 months, which is unacceptable in practice.” 

[Gu 2001] Goriseen goes on to explain that “For most realistic problems the high 

computational cost of simulator codes and the high dimensionality of the design space 

simply prohibit this direct approach, thus making these codes unusable in engineering 

design and multidisciplinary design optimization (MDO). Consequently, scientists have 

turned towards up front approximation methods to reduce simulation times.” [Gorissen  

et al. 2007] 

1.1 Statement of the Problem 

 

In modern physics-based systems’ engineering offices, the computational power 

required to support informed decisions can be can be prodigious. Even with the latest and 

most powerful computer systems, systems engineers may wish to base their design and 

development decisions on more data than can be provided using classical high fidelity 

computational codes. They may want to use additional systems engineering analysis and 

optimization tools that require the running of a range of possible inputs to enhance the 

systems output or to investigate and potentially reduce variability or uncertainty in a 

particular design or approach. What is needed is a methodology that provides increased 

insight into the performance of or problems with physics-based systems beyond the 
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necessarily limited analysis runs afforded through the use of time consuming and expensive 

high fidelity models alone. 

1.2 Hypotheses 

The primary hypothesis of this study is that there are modeling and simulation 

approaches that make possible the use of systems engineering decision making tools by 

reducing the time and cost of these activities during the design and development of 

complex physics-based complex systems. Specifically, we hypothesize that multi-fidelity 

modeling and the use of surrogate models can be used in a methodology that enables the 

efficient allocation of resources, time and cost, for the optimization and performance 

evaluation/validation of these systems without sacrificing rigor. We further hypothesize 

that reductions in time consuming high fidelity modeling and simulations allows expanded 

use of systems engineering related sensitivity and other analyses to evaluate the changes in 

a system’s output response to changes in nominal controlled and uncontrolled input 

parameters. 

1.3 Purpose of the Research  

The purpose and long range objectives of this effort are to develop a structured 

framework for the use of decision based models of increasing fidelity and efficient 

surrogate models to assist planners and decision makers in the design and development of 

physics-based systems. The framework should encompass both a problem-solving 

philosophy and a collection of methods. The philosophy is to use the goals of objectives 

and goals of the program manager as an explicit consideration in the choice of model and 

outputs needed for the problem or system being analyzed. This involves model decision 

analysis in an engineering environment. In the collection of models available, high fidelity 
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models are generally the most accurate but resource constraints and other program 

considerations may require the most efficient model at the lowest level of fidelity that 

answers the question. The model appropriate for requirements analysis may not be the same 

as that needed to analyze alternative designs. They both may be different from the model 

for design and development. From an industrial perspective the requisites is not a method 

that yields “the optimal solution”, but methods that could be applied to a wide range of 

problems and employed together with the tools presently used in industry and give near 

optimal solutions in a reasonable time frame. [Olvander 2009] The new framework should 

be applicable for all of these uses. 

1.4 Significance  

 

Modeling and simulation is particularly important in the development of complex 

physics-based systems because in today’s rapidly changing technological environment 

there is not enough time or money to build the number of physical simulators necessary to 

evaluate the performance of complex systems in the many environmental and operational 

conditions in which they must operate. The cost of correcting problems in complex 

physics-based systems greatly increases with the maturity of the system. Modeling and 

simulation facilitates the early investigation of variables and responses and allows the use 

of traditional systems engineering statistical methods and other tools to reduce uncertainty 

and aid in program management decisions during the design and development stage of a 

systems acquisition. It can provide early predictions of system performance allowing 

engineering-level tradeoff analysis of potential technologies and systems. Deficiencies can 

be investigated individually and solutions developed early in the system’s development. 

High fidelity physics-based computation models are capable of performing these studies 
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but they are too expensive in time and computational load. There may be several alternative 

designs during the design and development phase. These can be evaluated using faster 

running low fidelity models to reduce the number to: only those feasible in the design 

space, those which are affordable, or those that best meet the stakeholders’ requirements. 

Multi-fidelity models can be applied as the alternative designs are narrowed. Insight into 

the problems being studied can be gained by the use of meta or surrogate models. Surrogate 

models and lower fidelity models look for answers in the gaps between the limited analyses 

allowed when using only high fidelity models alone. They can provide better correlation 

between the data gained from different physical models and/or experimentation. Surrogate 

models can provide the systems engineer with enhanced understanding and decision 

making by providing additional information from modeling and simulation and other 

sources in a useful and productive way. Finally, component and more time consuming and 

computationally expensive models of higher fidelity can be employed to evaluate, test and 

qualify chosen configurations or designs. At each level of fidelity the systems engineer has 

the choice of decreasing computational time and expense by the use of surrogate models. 

A methodology that assists the systems engineer in implementing this approach would be 

of great value. 

1.5 Scope and Limitations  

This effort focuses on that part of systems engineering as the professional discipline 

that designs and develops complex physics-based systems. The systems engineer has 

technical responsibility for the system. These principles guided the application of modeling 

and simulation of the system during the design and development phase. This study 

investigates the way in which models of increasing fidelity and efficient surrogate models 

can assist these planners and decision makers while at the same time observing the need to 
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reduce the cost of time consuming high fidelity models and simulation. It seeks to develop 

a structured framework for the application of multi-fidelity at the lowest level necessary to 

answer the decision maker’s needs and concentrates on applying surrogate models to 

further reduce the cost of modeling and simulations in the design and development of 

physics-based systems. It does not cover the models and simulations used during any 

acquisition phase outside of the design and development of a physics-based system. It also 

does not cover or present examples of systems engineering tools such as regression analysis 

etc. because these are covered in many readily available texts on systems engineering.  

1.6 Organization of this Study  

There are a number of cost saving approaches and techniques that systems 

engineers might employ to get fairly accurate estimates of a system's performance instead 

of using only HF computational code analysis. Some of those state-of-the-art approaches 

include the use of multi-fidelity models and surrogate models. These are introduced in the 

next section. A framework for applying these models in the design and development of 

complex physics-based systems is presented in Chapter 3, the methodology section. This 

framework combines systems engineering design of experiments with simulation and 

modeling to ensure that two cost reducing techniques are always followed. The first is the 

use of the lowest fidelity model required to answer the problem, and the second is to use 

surrogate models where needed to reduce the number of simulations that require high 

fidelity models. The framework is demonstrated in Chapter 4, where we describe the 

modeling and simulation of a GPR, and then further illustrated in the capstone design and 

modification of a NEMP/BWS using this approach. We end with a conclusion section that 

details the findings of the study. 
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Chapter 2 – Literature Review 

New physics-based systems are designed to numerous stakeholder requirements 

including performance, reliability, safety and other criteria. Computer simulations of 

physical processes are used to analyze these systems in terms of their inputs and outputs 

that relate to these requirements. This often requires the use of high fidelity computational 

engineering or physics codes such as computational fluid dynamics, computational 

physics, or computational electromagnetics. Stakeholders, decision makers and engineers 

who use these results must answer the question: How much confidence do I have in these 

results? The primary means to quantify this confidence is verification and validation. 

Verification requires an assessment of the accuracy of the results. Validation is an 

assessment of how well the computational results compares to measured real-world 

experiment data. To achieve high confidence often requires large quantities of inputs and 

determining the changes in outputs. This can represent more data than can be provided by 

using accurate but extremely time consuming high fidelity physical models. This study 

concerns the use of models and simulations to support the design and development of 

physics-based systems. The design process paradigm uses decision-making models to 

describe design alternatives and optimization methods that search the design space for the 

best design among all possible design options. [Olvander 2009] For physics-based systems, 

the allure of the very accurate physical high fidelity models is natural. The problem is that 

these models are often extremely time consuming and can preclude the use of systems 

engineering decision making tools and techniques. This literature review addresses the 

major areas that effect the choices of lower fidelity models that can take the place of them: 

modeling and simulation, high fidelity models, the use of multi-fidelity model and 
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surrogate models, the Finite Difference Time Domain high fidelity electromagnetic 

computational code and systems engineering. 

2.0 Background  

 Because it may not be realistic to only use detailed HF models exclusively in the 

design and development of a complex physics-based system and because of the need to 

reduce the computational time, cost and complexity of this modeling, a literature search 

was conducted to survey approaches used to model system performance and identify 

techniques that might present a more efficient approach. Many approaches or frameworks 

found use multi-fidelity models. Others use surrogate models. Some examples of these are 

provided in the following sections. Both approaches may reduce computational time and 

expense. When addressed in the literature, most of these approaches are geared to address 

specific physics-based systems like an aircraft wing or an electromagnetic filter. In this 

literature review we seek a more generalized approach.  

2.1 Modeling the System  

 In recent years, systems engineers have seen a dramatic increase in the use of HF 

computational M&S in the design and development of physics-based systems. Models 

based on proven accurate high fidelity CFD and CEM and other computational codes are 

routinely used to optimize and validate complex system designs and evaluate system output 

responses to changes. For example, Ong et al. state “[…] in many complex engineering 

design problems where HF analysis models are used, each function evaluation may require 

Computational Structural Mechanics (CSM), Computational Fluid Dynamics (CFD), or 

Computation Electromagnetics (CEM) simulations costing minutes to hours of 

supercomputer time.” [Ong et al. 2005] Many recent approaches or frameworks, such as 
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those presented in Table I, use multi-fidelity models or surrogate models to reduce 

computational time and expense. Table I presents a list of works that applied multi-fidelity 

and surrogate models as a design tool in place of HF models in the design of aircraft 

components and EM system components such as filters and antennas. Normally, these 

surrogate or meta-models replace some computational functions within the HF code. 

Surrogate models can reduce the time and expense of searching for promising designs by 

standing in for high fidelity expensive design evaluations or simulations. They can allow 

the optimization of various design input metrics (such as weight, aerodynamic drag, cost, 

etc.) in less times and lower cost than using the very accurate high fidelity models. 

Full scale HF simulations based upon models that use well-established 

computational codes play a major role in the design, development and test planning for 

physics-based systems. “Such analysis codes play a central role in the design process since 

they aid designers and scientists in validating new designs and studying the effect of 

altering key parameters on product and/or system performance.” [Lim 2010] Complex 

physics-based systems are physical systems that are controlled and driven by physical laws 

(i.e complex electromagnetic systems and Maxwell’s Laws/Equations). High fidelity 

computational codes are mathematical models that provide reasonable performance 

predictions of these physics-based systems. As models become more precise, they become 

expensive in terms of computational time and resources with modeling expense sometimes 

exceeding traditional build and try techniques. This is particularly true when these 

computationally expensive programs are used for: (1) solving an inverse engineering 

problem, (2) performing an evolutionary design, or (3) optimizing a system. Systems 
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engineers need accurate data and often must make a clear decision whether a HF simulation 

is required or if data from a lower fidelity or surrogate model might be good enough.  

Table I presents a list of recent papers that are representative of the types of meta-

models (surrogate) models and the components for which they were used as a design tool. 

The works reviewed in Table I used multi-fidelity models for problems that include low-

fidelity surrogate models in the design of aircraft components and EM system components, 

such as filters and antennas. Based on this part of the review, it was clear that multi-fidelity 

models and simulation are on-going research and improvement topics.  
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Table I. Design Efforts using Multi-fidelity Codes with Surrogate Models 

Reference 
Date 

Journal Article 
Name 

Area Multi-Fidelity 
Approach 

Systems 
Modeled 

Koziel, et al.  

2012 

Computational-Budget-Driven 

Automated Microwave Design 

Optimization Using Variable-
Fidelity Electromagnetic 

Simulations 

EM  

Optimization  

Coarser models for 

low fidelity and finer 

models depending on 
computational budget 

Fourth order ring 

resonator bandpass filter 

dual band bandpass 
filter microstrip 

wideband antenna 

Kuya, et al. 
2011  

Multifidelity Surrogate 
Modeling of Experimental and 

Computational Aerodynamic 

Data Sets  

Aero  Multi-fidelity Co-
Kriging regression 

surrogate model with 

Latin Hypercube 

Inverted wing with 
counter-rotating vortex 

generators in ground 

effect 

Koziel, et al. 

201l 

Space-Mapping Modeling of 

microwave devices using multi-

fidelity electromagnetic 
simulations  

EM Space Mapping 

Surrogate with coarse 

mesh data Space 
Mapping high fidelity 

model with base 

locations  

Micro-strip Chebyshev 

bandpass filter, Double-

folded stub filter, two-
section low-pass elliptic 

filter 

Couckuyt, et al. 

2010 

Surrogate-Based Infill 

Optimization Applied to 

Electromagnetic Problems  

EM Expected improvement 

approach 

Microwave filter textile 

antenna 

Crevecoeur, et al. 
2010 

A two-level Generic Algorithm 
for Electromagnetic 

Optimization 

EM Fast coarse model Algebraic test function 
die press model, 

octagonal double-layer 

electromagnetic shield  

Koziel, et al. 
2009  

Multi-fidelity Optimization of 
Microwave structures Using 

Response Surface 

Approximation and Space 
Mapping  

EM 
Optimization  

Surface approximation  Microwave structures 

You, et al. 

2009 

Kriging Model Combined with 

Latin Hypercube Sampling for 
Surrogate Modeling of Analog 

Integrate Circuit Performance  

EM  Kriging with Latin 

Hypercube surrogate 

Integrate circuit 

(operational amplifier)  

German, et al.  

2009 

A Multi-fidelity Modeling 

Approach for Cosite Interference 
analysis  

EM Multiple models of 

different fidelity 

Cosite electromagnetic 

interference analysis  

Chandila 

2002 

Strategy for Global Optimization 

Post-optimality Using Local 
Kriging Approximations (Master 

Thesis)  

Operations 

Research 
Structural  

Kriging local and 

global optimization 

Engine piston torpedo 

mission analysis 
structural truss  

Queipo, et al. 

2005 

Surrogate-Based Analysis and 

Optimization  

Multiple  Survey of multiple 

methods 

Space Craft injector 

nozzle 

Booker, et al. 
1998  

Optimization using surrogate 
objectives on a helicopter test 

example 

Aero 
Design & 

Optimization 

A comparison of 
several approaches 

Helicopter rotor blade 
design 

Siah, et al. 

2004  

Fast Parameter Optimization 

Using Kriging Meta-modeling 

EM Hybrid Kriging 

metamodeling 
DIRECT global 

optimization algorithm 

Slotted Array 

FM (frequency 
modulation) antenna 

and cable vehicle 
chassis and cable 

 

2.2 Multi-fidelity Physics-Based Models  

In many areas multi-fidelity models have been used to overcome the limitations 

imposed by high computational cost associated with the use of high-fidelity 

multidisciplinary optimization techniques in the design of new systems. This is particularly 
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true for physics-based systems that must be characterized by high-fidelity codes such as 

computational electromagnetics. This is important when one or more parameters become 

a cost function or a constraint because numerous high fidelity model runs are necessary 

due to uncertainty or the need to optimize the system. 

Fidelity, as defined by the Simulation Interoperability Workshop Integration Study 

Group, is “The degree to which a model or simulation reproduces the state and behavior of 

a real world object or the perception of a real world object, feature, condition, or chosen 

standard in a measurable or perceivable manner.” [Hughes et al. 2003] Fidelity is also 

considered to be an absolute measure of M&S representational closeness to reality as 

compared to validity which is considered to be a judgment. [Hughes et al. 2003] 

 

 “Essentially, all models are wrong, but some models are useful” [Box et al. 1987]  

 

With this insightful quote in mind, one might deduce that a perfect simulation is 

probably impossible to achieve. Therefore measuring fidelity is an essential step to 

determine the usefulness of a model or simulation. A multitude of methods to measure 

fidelity exist; some are quantitative while others are qualitative. [Duncan 2006] 

Braak and Ern found that, in various cases, the most accurate and validated physics-

based models for numerical simulations of reactive flows could not be chosen because of 

a profusion of computational costs. They suggest that simpler, lower fidelity models of 

different complexity, scales and accuracy be used to reduce these costs. [Braak and Ern 

2004] More recent academic studies, some highlighted in Table I, discuss using multi-

fidelity models to solve specific design problems. Unlike these academic studies, the 
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example provided in Chapter 4 of this study presents a direct industrial application of these 

models, a Nuclear Electromagnetic Pulse Bounded Wave System. A common recurring 

theme in most of the papers reviewed is that is the systems engineer should choose the 

most efficient lowest fidelity model and simulation that answers the design problem or 

question, satisfies the stakeholder’s needs and provides the results that the stakeholder can 

trust. 

Multi-fidelity models consist primarily of two types of physics-based approaches: 

1.  Use different physics-based models and compare or validate the results by a 

comparison of the output responses of the system to the same set of inputs and 

conditions.  

2. Use a high fidelity model with considerably lower resolution. 

 

The first approach is demonstrated in the NEMP/BWS example presented in 

Chapter 4. This example uses a resistance inductance capacitance (RLC) circuit as a low 

fidelity model, a Personal Computer Simulation Program with Integrated Circuit Emphasis 

(PSPICETM) medium fidelity model and a FDTD high fidelity model to modify and design 

the system. The second multi-fidelity approach was described by Koziel as a two-step 

approach for designing small microwave filters. [Koziel 2011] Koziel explains this 

approach as “Our technique is based on utilizing an ‘intermediate’, coarse-discretization 

EM model.” [Koziel 2011] For the second step, a surrogate is used to turn a coarse-grid 

physical model output of basis points into a fine-grid surrogate model approximation. 

eFieldTM demonstrates this second approach and gives an example of the computation time 

for two FDTD models of “fdtd1” and “fdtd2”, one with a coarser grid size as shown in 

Table II. [eField 2015] The one with a coarser 1.6 mm grid size required 358,200 cells to 
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define the problem space and one with a finer 0.8 mm grid cells size required 4.78 times 

as many cells, 1,745,000 cells. The lower fidelity coarse grid problem took 80 minutes for 

20,000 times steps and the fine grid took 145 minutes for the same number of time steps. 

Again, the systems engineer should choose the most efficient lowest fidelity model and 

simulation regardless of the model or the grid size that answers the design problem or 

question, satisfies the stakeholder’s needs and provides the results that the stakeholder can 

trust. 

2.3 Meta-models (Surrogate Models)  

“Surrogate models, also called meta models or response surface models, are used 

as particular substitutes for the complex numerical models, while being computationally 

cheaper to evaluate”. [Blanning 1975; Kourakos and Mantoglou 2013] Luo and Lu present 

an excellent example of how surrogates can be used to find methods to increase the 

efficiency of the time consuming tasks of groundwater remediation. [Luo and Lu 2014] 

They found that a surrogate driven simulation and optimization technique is an effective 

tool to solve this problem. [Ahlfeld et al. 1988; Guan and Aral 1999; Liu et al. 2000; 

Schaerlaekens et al. 2006; Md Azamathulla et al. 2008] “However, the enormous 

computational cost of running such simulations multiple times, limits the applicability of 

the simulation optimization techniques in a complex groundwater remediation 

optimization process.” [Qin et al. 2007; Razavi et al. 2012] One method that reduces this 

computational burden is replacing the numerical models with efficient surrogate models. 

[Sreekanth and Datta 2010; Jin et al. 2001] In a review of current surrogate methods 

Simpson et al. explains that using surrogate models is commonplace. They state: “The use 

of statistical techniques to build approximations of expensive computer analysis codes 
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pervades much of today’s engineering design. These statistical approximations, or meta-

models, (also referred to as surrogate models) are used to replace the actual expensive 

computer analyses, facilitating multi-disciplinary, multi-objective optimization and 

concept exploration.” [Simpson et al. 2008] These models replace some computational 

functions within the HF code. 

 

 

Figure 3. The Role of Surrogate Modeling 

Figure 3 shows the role of surrogate modeling in support of design of physics-based 

systems. Surrogate modeling is a process by which complex or computationally expensive 

models (in time and cost) are represented by a simpler model as an interpolation of a set of 

data. It involves: generating a limited number of basis points using the HF code, choosing 

a surrogate model to represent the data and fitting the model to those basis points. Surrogate 

models are often used to decrease computation time and effort by replacing expensive 

solvers in the HF code with computationally cheap efficient solvers of less fidelity or 

approximation models. Bilicz provides an example: “To overcome the challenges arisen 

by the computation cost of the numerical EM simulators (computational electromagnetic 

codes), surrogate modeling (SM) is getting more and more wide spread in 
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electromagnetics.” [Bilicz 2011] Surrogate models allow the systems engineer to use 

traditional design and development methods that could not be used if only HF models were 

used. Without using surrogate models, the high cost and expense of employing HF codes 

for design and development may not allow the use of SE techniques to provide decision 

makers with a confidence level as to the system’s performance. Eason agrees: “Surrogate 

models allow the use of traditional optimization algorithms for otherwise intractable 

problems.” [Eason, J. et al. 2012] Bohling recommends that: “When the deterministic 

expensive EM code is used for reverse engineering, evolutionary design or for parameter 

optimization development then the use of surrogates, like the Kriging method that can 

reduce cost, time and effort should be considered.” [Bohling 2013] Kriging is an “optimal 

interpolation based on regression against observed z value of surrounding data points, 

weighted according to spatial covariance values.” [Bohlin 2013]  

2.4 Applying Meta-models   

 Crevecoeur et al. described general meta-models. Given a physics-based 

computational EM model with input parameters x ∈  Χ𝑓  ⊃ ℜ𝑛 and response y ∈ ℜ𝑚 such 

as 

𝑦 = 𝑓(𝑥)     (1) 

approximation model 𝑚 can be built. Χ𝑓 is the feasible region of the n-dimensional 

parameter vector x. The meta-model is much more efficient to run than its corresponding 

time-consuming physics-based model and yields the possibility of gaining additional 

     s = m(x)     (2) 

insight into the functional relationship between input parameters and responses. This meta-

model can be used to perform reverse engineering, evolutionary design, or design 
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optimization within multi-fidelity frameworks. The responses, s and y, need to be similar 

so that the meta-model is correctly used within these frameworks. It is important to note 

that these meta-models are interpolations of the data from physics-based models but are 

not physics-based. They relate the inputs with the outputs no matter what produces the 

output. [Crevecoeur et al. 2008] The choice of the type of meta-model used depends on the 

problem. The basic steps describe how to use surrogate or meta-models is show in Figure 

4.  

 

Figure 4. Frameworks of Building Surrogate Models [Han and Zhang 2012] 

The basic steps for using surrogate models follows:  

1. Select a set of input values of the basis or sample points (x1, x2, x3, x4, …., xn ) for 

the input variable of interest. The accuracy of the surrogate model depends strongly 

on the number and the locations of the basis points in the design space. The choice 

is aided by using Design of Experiments (DOE) that generate a series of 

experimental procedures (Figure 5). Some options for the selection of these basis 
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or sample points are simple random sampling, stratified sampling and Latin 

hypercube sampling. 

2. Use these basis or sample points to obtain a corresponding set of high fidelity 

output values pairs for the system (y1, y2, y3, y4, …., yn ). These can come from 

measurement of the actual systems output or by running the high fidelity model at 

these sample or basis points. 

3. Choose and construct a metamodel or surrogate model to represent the model. 

MacDonald, Simpson and others reviewed different surrogates and gave 

recommendations on different surrogates for different problems. [MacDonald 

2009; Simpson et al. 2008] Jin's team compared different surrogate models based 

on multiple performance criteria such as accuracy, robustness, efficiency, 

transparency and conceptual simplicity. They recommended using a radial basis 

function for high-order nonlinear problems and Kriging for low-order nonlinear 

problems in high dimension spaces and polynomial response surfaces for low-order 

nonlinear problems. [Jin et al. 2002] Other studies also compared meta-model 

types. [Lim 2010; Wang 2006] “When deterministic or expensive EM codes are 

used for reverse engineering, evolutionary design, or parameter optimization, the 

use of surrogates, like the Kriging method, should be considered to reduce cost, 

time and effort. Kriging is an optimal interpolation based on regression against an 

observed z value of a surrounding data point (called a basis point) weighted 

according to spatial covariance values.” [Bohlin 2013] 

4. Evaluate the accuracy of the surrogate model. Try the selected surrogate model 

with the basis points and compare the interpolated response or output data of the 
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surrogate model to the output of the high fidelity model at a number of points other 

than the original basis points. 

These steps are illustrated in Figure 5.  

 

Figure 5. Techniques for Metamodeling [Simpson, 2013] 

If the surrogate produces an output that mimics the underlying high fidelity model’s 

output as closely as needed over the entire design space, it provides a useful, cheap model 

that can be used instead of the time consuming high fidelity model to gain insight into the 

total behavior of the system over the entire design space. 

Using the systems engineering life cycle process, the NEMP/BWS example 

reported in Chapter 4 of this study extends the application of these surrogate models to the 

design of an entire system using a series of increasing fidelity physical models, starting 

with the lowest fidelity physical model necessary to answer the problem or question. This 

example uses three physics-based electrical and EM models and two surrogate models. The 

design of experiments for these two surrogate models is highlighted in Figure 5. The 
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specific surrogate modeling elements selected include the use of random selection of 

design points from the HF models, a polynomial curve-fitting function and a weighted least 

squares regression error-reducing technique. This set of points, function and regression 

techniques was used in a computationally efficient Kriging meta-model contained in the 

program Design and Analysis of Computer Experiments (DACE). “DACE is a 

MATLABTM Kriging Toolbox for working with Kriging approximations to computer 

models.” [Lophaven 2012] Kriging was selected because: physics-based systems often 

produce outputs that have a Gaussian distribution and these only require a small number 

of basis points. Kriging allows a substantial saving in computational time over the cost of 

running the HF model alone.  

2.5 Design of Experiments  

David Montgomery states that one of the applications of experiment design is the 

identification of design parameters that work well over a wide range of conditions in order 

to determine the design parameters that most impact product performance [Montgomery 

2009]. As shown in Figure 5, Design of Experiments (DOE) methods in the study are 

generally used to choose the locations of the sample or basis points when building a 

surrogate model. DOE is a procedure with the general goal of maximizing real-world 

applications of genetic algorithms the amount of information gained from a limited number 

of sample points. [Giunta et al. 2001] Currently, there are different DOE methods which 

can be classified into two categories: “classic” DOE methods and “modern” DOE methods. 

The classic DOE methods, such as full-factorial design, central composite design (CCD), 

Box-Behnken and D-Optimal Design, were developed for the arrangement of laboratory 

experiments, with the consideration of reducing the effect of random error. In contrast, the 
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modern DOE methods such as Latin Hypercube Sampling (LHS), Orthogonal Array 

Design (OAD) and Uniform Design (UD) [Fang et al. 2000] were developed for 

deterministic computer experiments without the random error as arises in laboratory 

experiments. Further information on classic and modern DOE methods was presented by 

Giunta et al. [Giunta et al. 2001] In this study, DOE is used to evaluate and target those 

inputs and multi-fidelity or surrogate models that achieve outputs that closely agree with 

those resulting from high fidelity models or actual system measurements. 

2.6 Kriging 

Kriging is a methodical approach used to interpolate the values of an output 

parameter when only a few values (i.e., basis points) are known. In complex systems, these 

basis points are usually found by running the HF computational code at a few points to 

generate known values. In reality, these values can come from any source that relates 

control input parameters to some output parameters. Measured values produce these points 

directly. Calculated values using higher fidelity analog electrical models produce exact and 

deterministic output data. Measured values can have variations due to systematic errors in 

measurement, or due to the data acquisition method. Kriging is designed to handle these 

errors by assuming they have a Gaussian distribution. The Kriging algorithm requires a 

kernel, a mathematical function, that best curve fits the known data. Some commonly used 

kernel functions include: circular, exponential, linear and Gaussian. The Kriging program 

uses this function to produce surfaces that pass through each of the known data points in 

the area around the known data points. Once the mathematical equation that best fits the 

variance is chosen, it can be used to estimate the surface at other values. Xiong presents an 

excellent example of the sampling basis points used in a Kriging model in two dimensions 
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in Figure 6 and the corresponding predicted output point based upon those 16 input basis 

points in Figure 7. [Xiong 2008] 

 

Figure 6. The sampling (basis) points (16)            Figure 7. Kriging predicted values at  

used in a Kriging model in two dimension          the output based on sixteen basis  

[Xiong 2008]             points [Xiong 2008]   

 

Kriging generates its output through an interpolation of a limited number of basis 

points from the higher fidelity physical model. The cost savings come from the fact that 

running an interpolation program like Kriging requires a small fraction of the 

computational time and cost of the corresponding higher fidelity code. 

2.7 Finite Difference Time Domain (FDTD) Models  

FDTD is an accurate high fidelity electromagnetic code. FDTD solves Maxwell’s 

equation in the time domain. FDTD calculates the electromagnetic field value in a finite 

problem space at discrete steps in time. FDTD, a high fidelity computational 

electromagnetic code, was the high fidelity model and simulations for both examples 

presented in Chapter 4 of this study. Because time domain calculated waveforms can be 

transformed into the frequency domain, by using a Fourier transform, FDTD provides a 

broadband output with a single execution of the program. This would be contrasted with 

frequency domain techniques that must solve the problem one frequency at a time. A 
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distinct advantage of using FDTD is that it has excellent scaling capabilities as the problem 

size grows. FDTD techniques relate the surface currents and charges in a problem space 

that are modeled by Maxwell’s curl equations which are:  

∇ 𝑥 𝐸 =  −
𝜕𝐵

𝜕𝑡
     (3) 

∇ x H = J + 
𝜕𝐷

𝜕𝑡
    (4) 

These equations are used to develop a solution approach known as the finite difference 

formulation. A detailed development of the equations for the three dimensional version of 

the FDTD code is presented in a thesis by Williford and in Appendix B of this study. 

[Williford 1985] FDTD models the propagation and interaction of an electromagnetic wave 

in a region of space that may contain any object. This method is different from the integral 

equation method in that it analyzes the interaction of the incident wave with a portion of 

the structure at a given instant in time rather than solving the entire problem at once. Yee 

first suggested the FDTD formulation for solving Maxwell's two curl equations (1) and (2), 

stating that the derivatives in these equations could be expressed as differences of the field 

values between neighboring positions, both temporally and spatially. [Yee 1966] These 

difference equations yield the values of the field at a given location in time and space if the 

values at all positions in the problem space are known at an earlier time. 

Yee developed the FDTD algorithm in 1966 as a method to compute the waveforms 

of pulses scattered from infinitely long, rectangular cross section, conducting cylinders. 

[Yee 1966] Rymes used FDTD to analyze data from direct lightning strikes to a NOAA C- 

130 aircraft. [Rymes 1981] This code was later modified and used by Hebert and Sanchez-

Castro to analyze the data from inflight lightning strike measurements by a CV-580 aircraft 

[Hebert and Sanchez-Castro 1987] and by Williford to explore the validity of different 
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boundary conditions using FDTD to model an F-16 aircraft. [Williford 1985] Williford, 

Jost and Hebert found using FDTD absorbing boundary conditions with FDTD produced 

better results than the perfectly electrically conducting (PEC) reflective boundary 

conditions originally used by Yee but at the cost of longer run times. [Williford, et al. 1986] 

It was during these efforts that the passion to find a less time consuming method to perform 

this type modeling and simulation was born. In 1984, at the request of his branch manager, 

then Lt. Hebert performed the analysis of CV-580 lightning interaction with aircraft data. 

Only a few iterations of the airframe’s FDTD model, written in FORTRAN 77, were run 

over a period of weeks, but the bill from the centralized main frame computer center was 

over $180,000. This same analysis today could be performed at a small fraction of this cost 

on a standard PC using MATLABTM; but it would still take weeks to perform this extremely 

time consuming high fidelity analysis. 

These efforts showed that FDTD was useful for the modeling and analysis of 

electromagnetic interaction with systems. This type code is easily adapted to a variety of 

materials in the problem space leading directly to its choice to analyze GPR data. FDTD is 

also regularly used in the analysis of the interaction of electromagnetic waves with test 

objects making it a clear choice for investigating the design of the bounded wave portion 

of the nuclear electromagnetic pulse/bounded wave simulator in the example of Chapter 4. 

In addition, nonlinearities and time-varying quantities can be represented in the problem 

space grid, if the needed equations can be written at the appropriate location. Finally, 

FDTD codes written in MATLABTM are easily adapted to parallel processing and multi-

processor systems including graphics processing unit (GPU) processors. GPU-accelerated 
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computing is the use of a GPU together with a central processing unit (CPU) to accelerate 

scientific, analytics, engineering, consumer and enterprise applications. [NVIDIA 2015]  

The solution of an electromagnetic interaction problem by the FDTD technique is 

straight forward. For our system model, the problem space is divided into a lattice of 

uniform sized cells. As shown in Figure 8, the gridding procedure involves placing the 

components of the electric (E) and magnetic (H) fields around a unit cell and evaluating 

the field components at alternate half-time steps. The electric fields are located on the edges 

of the box and the magnetic fields are positioned on the faces as shown in the Yee Cell. 

This orientation of the fields is known as the Yee cell. [Yee 1966] They are the basis for 

FDTD. Time is divided into small steps where each step represents the time required for 

the field to travel from one cell to the next. Because of the space between the magnetic 

fields and the electric fields, the values of the fields with respect to time are offset. The 

electric and magnetic fields are updated using a leapfrog scheme where first the all of the 

electric fields in the space and then all of the magnetic fields, are computed for each step 

in time. 

  

Figure 8. 3D Yee Cell [Yee 1966] 

By alternating between the Electric (E field) and Magnetic (H field) fields, a central 

difference expression can be developed for both the space and time derivatives that 
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maintains a higher degree of accuracy than either a forward or backward difference 

formulation. The FDTD process flow is shown in Figure 9. 

 

 

Figure 9. The FDTD Process Flow [Nagaoka and Watanabe 2010] 

The problem solution proceeds by time-stepping throughout the problem space, 

repeatedly solving the finite difference form of Maxwell’s two curl equations. In this 

fashion, the incident wave is tracked through the problem space as it intercepts and interacts 

with the targets, at layer interfaces and with other objects in the problem space. In other 

words, any item with material electrical and magnetic properties can be gridded up into the 

space and the interaction with source electrical field can be calculated. The cell size that 

makes up the problem space is the most important constraint in any FDTD model. It 

determines both the step size in time and the upper frequency limit for the calculation. In 

practice the cell’s size is set so that 10 cell sizes equal the wavelength of the upper 

frequency of interest.  

The major drawback for FDTD is the computation time required. Table II presents 

a summary of computation times for FDTD type problems reported by several researchers. 
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Table II. Runtimes for FDTD Examples 

Researcher What was 
modeled 

Boundary 
Condition 

Type 

CPU Computer 
Memory 

Number of 
cells 

Number of  
Time steps 

Time to 
complet

e 
simulati

on 
 (min) 

20,000 
time 
steps 
(min) 

40,000 
time 
steps 
(min) 

eField™ 
2015 

Pacemaker 
w/PIFA in 
human 
body 

Absorbing 1 processor 
on AMD 
Dual Core 
Opteron 285 
at 
 2.6 GHz 

16 GB 358,200 20,000 80 80 160 

eField™ 
2015 

Pacemaker 
w/PIFA in 
human 
body 

Absorbing 2 processors 
on AMD 
Dual Core 
Opteron 285 
at 
2.6 GHz 

16 GB 1,745,000 40,000 290 Unknown 290 

Kawanda, et 
al. 2012 

Acoustic 
waves 
using 4th 
order 
compact 
finite 
differences 

Rigid totally 
reflection 

Intel Core i7 
processor 
930 at 3.9 
GHz 

Unspecified 2,097,152 500 3.43 137.36 274.72 

Kawanda, et 
al. 2012 

Acoustic 
waves 
using 4th 
order 
compact 
finite 
differences 

Rigid totally 
reflecting 

Intel Core i7 
processor 
930 at  
3.9 GHz 

Unspecified 4,096,000 500 6.99 267.66 535.31 

Kawanda, et 
al., 2012 

Acoustic 
waves 
using 4th 
order 
compact 
finite 
differences 

Rigid totally 
reflecting 

Intel Core i7 
processor 
930 at  
3.9 GHz 

Unspecified 7,077,888 500 9.42 376.64 753.27 

Kawanda, et 
al., 2012 

Acoustic 
waves 
using 4th 
order 
compact 
finite 
differences 

Rigid totally 
reflecting 

Intel Core i7 
processor 
930 at  
3.9 GHz 

Unspecified 12,812,904 500 11.62 464.89 929.79 

Kawanda, et 
al., 2012 

Acoustic 
waves 
using 4th 
order 
compact 
finite 
differences 

Rigid totally 
reflecting 

Intel Core i7 
processor 
930 at  
3.9 GHz 

Unspecified 16,777,216 500 13.55 542.07 1084.15 

Nagoaka, et 
al. 2010 

Human 
body 

8 layer 
perfect 

matching 

Intel Xenon 
X5450  
(3.0 GHz) 

16 GB 14,760,420 Unspecified 104.92 unknown unknown 

Pinton, et al. 
2012 

Propagatio
n through 
the human 
skull 

unknown UNIX Cluster  
16 CPUs 

128 GB 1.86 x 105 Unspecified 7200 unknown unknown 
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All of the examples show that for one run using a set of input variables, it takes 

from 160 to 7200 minutes. This would be unacceptable if the system engineer needs to 

optimize the design or to decrease uncertainty in the systems performance. Pinton et al. 

provides insight into the very large computational cost of modeling the human brain. 

[Pinton 2012] They explain that the simulation for the setup shown in Figure 10 has 

approximately 1.86 × 109 grid points for each field variable. The custom parallelized FDTD 

simulation code, written in C, FORTRAN 77™ and Open MPI runs on a Linux cluster 

running a Cent OS 5 operating system with 16 CPUs and 128 GB of RAM. The run-time 

on this system is 120 hours.” [Pinton et al. 2012] He also provides a view of the savings 

that can be realized by using a simpler interpolation model: “By comparison, the Delaunay 

interpolation scheme [Dulaunay 1934] requires on the order of one minute of computation 

time and it can run on a standard computer, with no special memory requirements”. [Pinton 

et al. 2012] In Table II, eFieldTM provides another example of the modeling: n implanted 

planar inverted-F antenna for a cardiac pacemaker. [eFieldTM 2015] 

 

 

Figure 10. Tartan FDTD Meshing of a Pacemaker with PIFA Placed Inside 

Muscle Equivalent Phantom [eField™ 2015]  
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eFieldTM gives an example of the computation time for two FDTD model “fdtd1” 

and “fdtd2” with 1.6 mm and 0.8 mm grid cells sizes. Using the more accurate smaller size 

mesh it took 290 minutes (4.82 hours) for one run. To perform an optimization set of runs, 

10,000 iterations would take 2013 days making the use of systems engineering tools 

practically impossible. Contrast this with using a surrogate model: to produce ten basis 

points for a surrogate model using the high fidelity FDTD would only take two days and 

to produce the 10,000 surrogate produced responses would take only a few minutes. To 

validate ten of the surrogate produced responses using the HF FDTD code at different 

chosen points would take two additional days. Like most physics-based computational 

models, FDTD is computationally intensive and most problems require a fast computer 

(such as today’s i7 quad core processors) with a substantial amount of computer memory 

(16 GB RAM). Each FDTD cell identifies six unique fields and stores six material values 

(See Appendix B). This requires 30 bytes of memory for each cell: 24 for fields and six for 

material properties. The memory required is the number of cells times 30 plus about 10% 

for overhead functions. For execution time, it strongly depends on the performance of the 

computer processor. The total number of operations for each time step is roughly 80 

(operations per cell) times the number of cells times the number of time steps. In one of 

the examples shown in Table II above, a problem space with 1,745,000 cells took 290 

minutes to perform 40,000 time steps. This was on a computer with one processor on an 

AMD Dual Core Opteron 285 2.6 GHz with 16 GB memory. In contrast, surrogate models 

can provide highly accurate decision making information is a small fraction of the 

computation time when compared to using the high fidelity FDTD method to perform the 

same task. Modeling using FDTD techniques, although time consuming, has the advantage 
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in that it allows the observation of changes in response to changing input variables without 

the expensive cost of physical experiments and tests. But this high fidelity code, although 

very accurate, still suffers the problem of being very time consuming preempting its 

classical use for some systems engineering optimization methods. A more cost effective 

methodology is needed that includes the use of efficient multi-fidelity and surrogate 

models. 

2.8 Systems Engineering 

One of the most challenging tasks for a systems engineer is the efficient allocation 

of resources in time and costs for the optimization and performance evaluation/validation 

of complex physics-based systems such as those used in defense and transportation 

industries during their design and development. Recently time and cost limitations have 

resulted in the increased use of accurate high fidelity modeling and simulation. A typical 

physics-based system has a number of controlled and uncontrolled parameters that can 

have a significant impact on these type systems. By making small changes or variations in 

the nominal value of input parameters. Systems engineers can use sensitivity analysis to 

investigate how a system’s output behaves due to variations in inputs parameters and to 

rank their importance in the output or performance. Oberguggenberger et al. discuss the 

sensitivity of output values in engineering models with respect to variations in the input 

parameters. They state that “Such an analysis is an important ingredient in the assessment 

of the safety and reliability of structures. A major challenge in engineering applications 

lies in the fact that high computational costs have to be faced. Methods have to be 

developed that admit assertions about the sensitivity of the output with as few computations 

as possible.” [Oberguggenberger et al. 2008] A typical physics-based system has a large 
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number of controlled and uncontrolled parameters that can have a significant impact on the 

performance of the system. The systems engineer uses sensitivity analysis that applies 

small changes to the system’s input value and determines the resulting change in the output 

response, to understand a system’s behavior due to variations in the inputs and to determine 

how important variations in that input are. Final operational tests for physics-based systems 

and the use of high fidelity models and simulations are expensive and time consuming and 

may not allow the design and generation of sufficient data points to allow statistically valid 

conclusions at the required level of confidence. By applying an improved methodology 

that includes systems engineering, multi-fidelity and surrogate models, a more effective 

allocation of resources may be realized. Olvander discusses the usage of simulation-based 

optimization to support the design of complex engineering systems. He explains that: “To 

beat the competition to the market it is also necessary with a rapid system development 

process. For these reasons, the design of heterogeneous systems with great demands on 

functionality and safe behavior deserves a great deal of attention. Especially in the early 

conceptual phase of the design process, the designer needs efficient tools that make it 

possible to compare different design solutions and to analyze the whole system and not just 

a part. Tools are also needed, that can relate design decisions at detail level to high-level 

requirements in order to ensure traceability in the design. Figure 11 depicts a system design 

process where modeling, simulation and optimization are introduced to support and speed 

up the design process. In the proposed system design process, the iterative part of the design 

process is formalized and partly automated with the help of an optimization algorithm.” 

[Olvander 2009]  
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Figure 11. The System Design Process [Olvander 2009] 

When exploring potential concepts for meeting the stakeholders’ requirements, any 

already existing systems should be evaluated first. Identify any performance deficiencies 

that might require modification for the predecessor system to meet present or future needs. 

Pre-existing systems have the advantage of being easier to evaluate in terms of 

performance, development risks and costs. If a new system is required, systems engineers 

use modeling and simulation to analyze the system performance of candidate solutions then 

generate a set of optimal alternatives. Optimization requires the evaluation of system 

responses to inputs of the various designs.  

The INCOSE defines systems engineering as “an interdisciplinary approach and 

means to enable the realization of successful systems. It focuses on defining customer 

needs and required functionality early in the development cycle, documenting 

requirements, then proceeding with design synthesis and system validation while 

considering the complete problem.” [INCOSE 2011] Modeling of interfaces at multiple 

levels of abstraction aids in understanding system complexity [Bahill and Dean 2009] 

Systems engineering as a technical discipline needs both qualitative and quantitative 

tools/methods to understand customer requirements, explore design options, design robust 
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and optimized systems and validate designs in the intended environments. [Jehangir 2015] 

Jehangir explains that systems engineering “…. tools and methods can be broadly 

categorized by their use. The categories and some examples under these categories are 

shown below:  

Requirements Management: Model Based Systems Engineering (MBSE), Systemic 

Textual Analysis, Viewpoint Analysis, Quality Function Development (QFD), Functional 

Modeling, Need Means Analysis, Function Means Analysis, Holistic Requirements Model, 

Stakeholder Map 

 Design: Heuristics, Taguchi Method, Design Structure Matrix (DSM), N2 Analysis, 

Matrix Diagram, Value Stream Mapping (VSM) Project 

 Management: Earned Value Management System (EVMS), Gantt Chart, 

Program/Project Evaluation Review Technique (PERT), Suppliers, Inputs, Process, 

Outputs and Customers (SIPOC) 

Problem Solving: System Optimization, System Dynamics, Ishikawa Diagram, 5 Whys, 

Quality Clinic Process Chart (QCPC), Relentless Root Cause Analysis (RRCA), Mistake 

Proofing; Functional Failure Mode and Effects Analysis 

Collaboration: Next Generation Technology (NGT), Multi-Factor Analysis (MFA), 

Affinity Diagrams, Context Diagram, Benchmarking 

Decision Making: Risk Cubes, Cost-Risk-Benefit Analysis, Pugh Matrix” [Jahangir 2015]  

Categories that are missing from his list are those concerned with the systems engineering 

tool used for the design and development of physics based systems. The following 

categories are missing from his list of systems engineering tools. They are tools  

that are used for the design and development of physics based systems. 
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Modeling and Simulation: Reverse engineering, optimization, sensitivity analysis, 

uncertainty analysis. 

Statistics: parametric studies, statistical models. 

Statistical systems engineering methods are used to understand and optimize 

parameters and reduce uncertainty. Ranges of allowed variables found in the simple fidelity 

models are transferred to models of high fidelity. While statistics plays a significant role in 

decision making with each fidelity level of models and simulation, it is particularly 

important at the primary level and intermediate level. “This is particularly true when: 

(1) It is impossible or too expensive to replicate the threat environment or the 

operational environment in which the system must operate such as nuclear EMP or 

Space. 

(2) Extremely complicated physical systems whose mathematical models result in high 

order of difference equations.  

(3) Field test and evaluations are limited due to a limited number of test systems, the 

cost of testing or other constrained program resources.  

Statistics facilitates the evaluation and analysis of system performance by decreasing the 

uncertainty and risk with each increasing fidelity level of models and simulation.” [Carson 

2004] 

These and other systems engineering techniques can be applied in the design and 

development of complex physics-based systems to improve the design cycle time and 

reduce risk during final system development and integration. There are many sources that 

discuss the classical systems engineering “V-model” shown in Figure 12. This model is a 

traditional way to visualize the systems engineering process. 
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Figure 12. Continuous Feedback in the Development Cycle [Torgerson 2013] 

Using less time consuming models, while reducing the number of high fidelity 

models and high fidelity runs required can directly support the Systems System Decision 

Process by allowing the use of classical systems engineering tools. The Systems Decision 

Process was developed by the Parnell and Driscoll at the Department of Systems 

Engineering, U.S. Military Academy show here in Figure 13. 
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Figure 13. System Decision Process [Parnell 2008]  

Their decision process has four phases that take the system from the present state 

to the desired end state. These phases are 1) Problem Definition, 2) Design and Analysis, 

3) Decision Making and 4) Implementation. As shown in Figure 13, the process begins 

with the current state. If a system already exists it becomes the baseline for modifications 

or candidate new systems. Decision makers and stakeholders determine critical metrics for 

evaluating potential solutions. Defining the final system desired and its attributes, decisions 

are made by evaluating the output of models that simulate the system performance of 

alternative solutions. The Parnell process depends strongly on the feedback from 

stakeholders and decisions during all four phases of the systems development. [Parnell 

2008] 
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Systems engineering tools, like the ones listed above, are used during the system 

architecture and subsystem design to drive the system architecture and subsystem 

definition is a way that best suits the needs of the stakeholders or customers. In the System 

Decision Process, these tools are particularly important during the system design analysis 

based upon the modeling and simulation of the physics-based system. Using high fidelity 

models to design a complex physics-based system could take years to perform the 

simulations required for the systems engineer to develop baseline system alternatives. If 

only high fidelity models are used this type of system during these activities, there likely 

will not be enough quality system performance data to analyze and optimize the system’s 

design. For this reason it is vital that a methodology be developed that will decrease the 

use of time consuming high fidelity models and replace them with multi-fidelity, meta, or 

surrogate models; provide the required response data in the quantities required to allow 

analysis with systems engineering tools and techniques for optimization of system 

performance in terms of customer’s needs; and allow the design and development of the 

physics-based systems in cheaper and much short time periods. 
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Chapter 3 - A Framework for Reducing Cost of Physics-Based Systems  

In this chapter, we present a framework where modeling and simulation using 

multi-fidelity and surrogate models provide significant time savings and allow the use of 

systems engineering tools to optimize the performance of the physics-based systems. 

Because of their accuracy it is easy to know when to use high fidelity models: anytime you 

have the time and resources to use them. Multi-fidelity models and surrogate models are 

widely used to estimate a system’s performance, particularly in the early design stage, due 

to their ability to reduce the time and cost of modeling and simulation for design 

exploration. In applying modeling and simulation there are many situations where 

modeling and low fidelity models and simulations are appropriate. Some common guiding 

principles found in the literature review include: 

 It is important to apply modeling in a way that maximizes its impact; otherwise 

someone will say it is too expensive. 

 Introduce modeling early on when it can really make a difference. [Nopper 2012] 

 Use the lowest fidelity model that answers the question. 

 Use low fidelity models to identify controllable and uncontrollable inputs. 

 Most problems are ill-defined at onset. Use low fidelity models to: 

o Identify constraints on the decision variables. 

o Define measures of system performance and an objective function. 

o Determine a range of potential solutions. 

 Use low fidelity models to interrelate the inputs and the measures of performance. 

 Use low fidelity models and simulation to define what is important and what is not 

and how important various parameters are. 
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 The low fidelity models provide insight and good test cases for later higher fidelity 

models. 

 Low fidelity models allow investigations of the sensitivities of the models to 

variations in controlled and uncontrolled inputs. 

 Low fidelity models allow the use of statistical systems engineering methods to 

understand and optimize parameters and reduce uncertainty. 

 Ranges of allowed variables found in the lower fidelity models are transferred to 

models of high fidelity. 

As the system’s development enters the analysis of alternatives phase, higher 

fidelity models and simulations may be required to compare each candidate system’s 

performance, to identify road blocks and to provide decision makers with data upon which 

a selection might be made. At each level, statistics are often used to assist in these 

decisions. The final system(s) are modeled and their performance is simulated using very 

high fidelity physical models such as three dimensional finite difference codes and other 

commercial codes. This chapter suggests a framework for the design and development of 

physics-based systems. 

3.1 Modeling Framework 

For the design and development of physics-based complex systems, a modeling 

framework that prescribes using the lowest fidelity model that answers the question and 

suggests surrogate models in place of HF computational codes is presented in Figure 14. 

This framework allows the choice of using a surrogate with each different increasing 

fidelity physical model. The potential savings from employing this framework includes: 

(1) the reduced cost of using less complex lower fidelity physical models; and (2) the 
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reduced cost of employing a surrogate model in place of codes at all levels of fidelity. For 

a particular system’s design, the modeler may end up using two or more different physical 

models of increasing fidelity. The answers obtained from these lower fidelity models may 

decrease the number of times the computationally expensive higher fidelity code must be 

run and the choice of surrogate models at each level can reduce computational time and 

expense even further. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Multi-Fidelity and Surrogate Model Framework 

3.2 Detailed Steps 

Step 1. Parameter Identification. In a design problem, “we are interested in calculating 

the values of certain parameters, �̂�, from the set of parameters, p, given known inputs i 

and desired output value, o, and a fixed structure, M. This type of problem is normally 

solved by using an optimization technique which finds the parameter values which 

 



www.manaraa.com

 

45 
 

generate the desired outputs. It is also called a specification problem.” [Cameron 2001] 

During this step, the modeler identifies and compiles the known and unknown inputs, 

outputs and measured parameters. The known parameters may include information from: 

(1) earlier developed systems,  

(2) system performance and other requirements,  

(3) engineering experience of subject matter experts and  

(4) other sources. 

Parameters that require reverse engineering are usually unknown. Measured test 

data from similar systems or previously built systems is often used to modify or improve 

an existing system. Measured data is often used to reverse engineer the lumped parameters 

of the lowest fidelity physical model. “The reverse engineering problem is formulated in 

fashion of an optimization problem where the unknown material (variable) properties are 

included as design variables.” [Zhu 2008] 

Step 2. Use Subject Matter Experts. The systems engineer uses subject matter experts to 

assist in the choice of physics-based models. Model selection can be as much an art as it is 

a science. With a clear understanding of the questions and how models can answer them, 

the experts provide insights based on heuristics into what a model can and cannot do. “The 

model is developed with the view that the system is exercised under varying conditions 

with varying inputs. As the outputs unfold, their results are recorded and tabulated so as to 

review appropriate responses when similar conditions and inputs are present in the model”. 

[Sokolowski 2012] If not sure which model is best, several models can be tried at a fraction 

of the cost of running the HF computational models. To reduce runtime computation cost, 

the lowest fidelity model that answers the question is used. 
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Step 3. Choice to use a Surrogate Model. The actual steps for selecting and using surrogate 

models is presented in Section 2.4. In designs that require reverse engineering, an 

evolutionary design, or system optimization, cost reduction may be realized by using a 

surrogate model in place of the corresponding selected physics-based model. If a surrogate 

model is selected, the physics-based code is run a few times to generate a limited number 

of sample basis points that are selected by a design of experiments. The surrogate model is 

constructed and the model is run then validated using error checking techniques such as 

mean squared error. “When the deterministic expensive EM code is used for reverse 

engineering, evolutionary design or for parameter optimization development then the use 

of surrogates, like the Kriging method that can reduce cost, time and effort should be 

considered.” [Bohling 2013] An efficient surrogate model requires less computational 

resources and time than the corresponding physics-based model. For the example in this 

study, a Kriging surrogate model is used to reverse engineer and optimize input parameters 

based on an output measured data waveform from a NEMP/BWS. The procedures for 

selecting and using Kriging and other surrogate models are presented in several of the 

papers cited in Chapter 2.3 and some are highlighted in Table I. If no surrogate model is 

needed, then the surrogate model steps are by-passed and the physics-based model is used.  

Step 4. Analyze. In this step, the results from simulations using multi-fidelity physics-

based models and/or surrogate models are compared and analyzed. Repeating what was 

presented in Step 4 of Section 2.4.: Evaluate the accuracy of the surrogate model. Try the 

selected surrogate model with the basis points and compare the interpolated response or 

output data of the surrogate model to the output of the high fidelity model at a number of 

points other than the original basis points.  Determine the mean squared error between the 
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surrogate model’s predicted output points (other than the basis points) and the same points 

using the high fidelity code. If too large input additional points into the surrogate model or 

proceed to step 5 in order to choose a different physics-based model of higher fidelity.  

Step 5. Decide. In this step, the modeler must decide if the model’s output or results have 

adequately answered the problem or question, namely “was the lowest fidelity model that 

meets the stakeholder’s needs correctly chosen and will the stakeholder be satisfied and 

trust the resulting model and simulation?" If the answer is positive, then proceed with the 

acquisition of the system. If the answer is negative, then go back and choose a higher-

fidelity physics-based model and repeat Steps 2 through 5. Each time the design loop (Steps 

2 – 5) is run, there is a choice if a surrogate model should be developed and employed. If 

the surrogate produces an output that mimics the underlying high fidelity model’s output 

as closely as needed over the entire design space, it provides a useful, cheap model that can 

be used instead of the time consuming high fidelity model to gain insight into the total 

behavior of the system over the entire design space. For the NEMP/BWS example 

presented in Chapter 4, three physics-based models of increasing fidelity were employed. 

A Kriging surrogate model was used with a MATLABTM electric circuit model and again 

with the very HF FDTD model, but not with the PSPICETM model. 
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Chapter 4 - Results of Applying the Framework 

Two examples of the methodology developed during this study are presented. One 

demonstrates only the multi-fidelity portion of the framework and the second shows the 

entire framework. The modeling framework was used to design and/or modify two real 

world examples. The first is a relatively simple GPR system and the second is a study 

capstone example: a NEMP/BWS, a complex electromagnetic system. Modeling and 

simulation results of a system analysis using high fidelity FDTD techniques are presented. 

The analysis for the GPR example was performed early in the research phase and 

investigated only the use of multi-fidelity models for investigating the electromagnetic 

reflections of target objects buried in the ground. When this research was performed the 

framework developed in this study did not include the choice of using surrogate models so 

they are not included in this example. The requirements and the measured data from that 

activity were used herein to apply, design, demonstrate and validate the models resulting 

from the application of the cost reducing multiple fidelity physics-based electrical and EM 

models. The NEMP/BWS example includes a design and development problem that 

employs the entire framework including both multi-fidelity and surrogate models to reduce 

the number of time consuming high fidelity model runs required. 

4.1 GPR Example 

The increasing fidelity methodology presented in this study lends itself well to the 

design and development of physics-based systems like Ground Penetrating Radars. 

Investigations performed early in the research phase of this study include multi-fidelity 

models of a GPR’s performance. These experiments make purposeful changes to the GPR’s 

propagation model inputs such as conductivity and permittivity. The resulting changes in 
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the output response are identified and reported. These changes are optimized to enhance 

the GPR’s ability to detect and identify buried objects. This subsection provides an 

example of how the propagation of GPR systems can be modeled using multi-fidelity 

models. 

Performance issues with GPRs need to be isolated in order to optimize the radar’s 

ability to detect and identify buried objects. Using a systems engineering approach, FDTD 

models were used to characterize the variables associated with the GPR to improve GPR 

detection processes so that they were minimally affected by external sources of variability. 

These experiments make changes to the GPR’s inputs while measuring the output response 

to identify issues and optimize performance. FDTD computer simulations produce 

idealistic environments that allow examination of the individual effects on the response. 

This example provides a systems engineering overview of the operations and processes of 

GPR systems and how MATLABTM based FDTD computer simulations can be used to 

model and improve them.  

     4.1.1 Ground Penetrating Radar Models  

Ground penetrating radar systems are used in many areas as a nondestructive 

investigation tool including soil management, archeology, mine clearing and infrastructure 

evaluations. The over-arching requirement of a GPR is to detect objects buried in the 

ground. Different fidelity level models and simulation can be used to perform the system 

analysis required to isolate and understand the factors that affect a GPR’s ability to detect 

and identify these buried objects. These GPR computer models and simulations allow the 

systems engineer to design a GPR to do what they should do without carefully controlled 

field experiments that are costly in terms of time and other resources. The effects of 
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changing simple variables such as surface and soil constituent properties on the GPR 

radar’s output are not separable. Often the effects are unidentifiable in measurements made 

under field conditions. A synthetic data set produced by FDTD computer simulations 

allows the separation of input variables to better understand their effects on the output 

response of the radar. These simulations produce idealistic environments and test 

configurations to allow close examination of the individual effects of these variables on the 

response. This example presents a version of FDTD code that has been implemented in 

MATLABTM to model and simulate a GPR’s performance. This version of the code is 

intended for use by researchers to observe, analyze and understand how different system 

input variables affect the GPR and its performance. 

Modeling the GPR as a system using multi-fidelity models allows a set of specially 

designed experiments where deliberate changes are made to the input variables so that 

changes in the output response can be observed and performance limiting issues can be 

easily identified. Three MATLABTM models and simulations are presented in this section 

of the dissertation:  

(1) A model for calculating the Fresnel reflection and transmission coefficients for 

perpendicular and parallel polarity incident waves as a function of grazing angle,  

(2) A one-dimensional (1D) Finite Difference Time Domain (1D-FDTD) model 

for comparison with the Fresnel model and  

(3) A three-dimensional (3D) Finite Difference Time Domain (3D-FDTD) FDTD 

model to allow simulation of the response to the GPR of changing various inputs.  

The amount of energy that is reflected at the boundary of two media (e.g., soil and 

buried target) with different permittivity is given by the Fresnel coefficient. The changes 
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in output response were observed while controlling various input variables. The initial 

results of controlling the conductivity and permittivity of the soil and targets are 

presented. Conductivity is a measure of a material's ability to conduct an electric current. 

Permittivity relates to a material's ability to transmit (or "permit") an electric field. 

David Montgomery states that one of the applications of experiment design is the 

identification of design parameters that work well over a wide range of conditions in order 

to determine the design parameters that most impact product performance. [Montgomery 

2009] Variables to be considered in simulation of the GPR as a system are: 

 (1) radiated waveform, 

(2) depth of penetration versus frequency, 

(3) transmitter antenna type, 

(4) height and grazing angle, 

(5) surface, soil and target properties, 

(6) target characteristics, 

(7) clutter, 

(8) moisture content, 

(9) interference, 

(10) receiver antenna type, 

(11) signal collection resolution and rate, 

(12) signal processing techniques and 

(13) optimizing response of all input variables to maximize detection and reduce 

false alarm rate. 
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Our initial research focused on two input variables that were found to greatly affect 

the GPR’s output response: conductivity and permittivity. A detailed examination of the 

response of the system to changing these two input variables allowed for optimization to 

obtain the most accurate possible output response. The systems engineering goal of this 

modeling and simulation effort is to define what a GPR system should be based on the 

systems response to input variables rather than applying a classical approach of 

determining of what a GPR can be by building and measuring the system’s performance.  

     4.1.2 GPR System Analysis  

This section discusses the motivation for using the SE tools of modeling and 

simulation in the development of the systems engineering GPR computer model and the 

selection of FDTD techniques to perform the system simulations and analyses. Surface 

penetrating active sensors (SPAS) such as GPR and ultrasound have hundreds of real world 

applications for their ability to "see into" and characterize solid and semi-solid substrates. 

As such, they are highly desirable functional components for a growing number of 

advanced systems. The computer models and mathematics for surface penetrating active 

sensors can be quite involved with only a few sensor models developed for specific 

instruments, for specific applications and/or for specific environments of use. To date, no 

general sensor system characterization models exist that can deterministically characterize 

sensor technology or examine the parametrics and tune in a response to an intended 

environment of use and a desired target resolving capability. The ability to 

deterministically match system sensing needs to SPAS capabilities would be of great 

interest to the systems engineer. At present, it is very difficult for all but the most highly 

trained experts to know what SPAS capabilities might work under what given set of 
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conditions. This example using multi-fidelity models presents an extensible approach 

towards the allocation of sensing performance requirements to SPAS solution technologies 

determined by analysis of the system’s responses to changes in various input parameters. 

[Hebert et al. 2012]  

The goal of this systems engineering analysis is to identify GPR system deficiencies 

and what can be done to improve the system’s performance. Five important steps in the 

systems engineering process include: 

(1) critical needs are identified, 

(2) current capabilities are assessed, 

(3) new or existing capabilities are explored, 

(4) prototyping or modeling and simulation are implemented and 

(5) final system deployed. 

The multi-fidelity models for this research facilitate the system analysis required by 

steps 2, 3 and 4 in the engineering process. This approach could provide the systems 

engineer with a requirements-driven solution synthesis by better characterizing and 

populating the architectural trade space with valid SPAS alternatives that represent a range 

of possible SPAS solutions. 

To analyze the GPR as a system we must first understand the components and 

functions of the GPR. This radar is used for the detection of objects buried below the 

surface. A simplified model of the GPR consists of a transmitting and receiving antenna, a 

source connected to the transmitting antenna and signal processing equipment connected 

to the receiving antenna. The type of antennas, choice of the transmitted signal and method 

of signal processing are all system variables that affect the output response and 
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performance of the GPR. As such each is a candidate for optimization as part of the GPR’s 

system architecture and design. 

 

 

Figure 15. Schematic drawing of typical GPR [Hebert et al. 2012] 

Figure 15 shows a GPR system and operating environment with the signals that are 

generated by the system. Filtering out the interference caused by the direct and the ground 

bounce signals in order to see the reflection of the return from the target may be necessary. 

The operating environmental variables that must be modeled in a GPR simulation include 

the two antennas, the electrical characteristics: permittivity, ε, conductivity, σ, and 

permeability, μ, of the air above the surface, the subsurface and the target. Other variables 

include the height above the surface of the antenna, the separation distance between the 

antenna and the depth of the target. Most of these variables are related or dependent on the 

other variables such that modeling them one at a time would cause unaccounted for errors 

in the output response. The best that can be done is to control the variables one at a time, 

while including all the variables in the GPR model and simulation. The research presented 

here includes a 3D-FDTD system analysis of the GPR that accounts for many of these 

variables simultaneously within the problem space. 
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Table III. Relative permittivity, εr. and EM velocity for selected geological materials 

[Baker 2007] 
 

Material εr:  

Davis and 

Annan (1969) 

εr: Daniels 

et al. 

(1995) 

Velocity 

(m/ns) 

Velocity  

(ft/ns) 

Air 1 1 0.3 0.96 

Distilled water 80  0.03 0.11 

Fresh water  80 81 0.03 0.11 

Sea water 80  0.03 0.49-0.57 

Fresh water ice 3-4 4 0.15-0.17 0.35-0.49 

Sea water ice  4-8 0.11-0.15 0.28-0.35 

Snow  8-12 0.09-0.11 0.35-0.50 

Permafrost  4-8 0.11-0.16 0.40-0.57 

Sand, dry 3-5 4-6 0.12-0.17 0.18-0.31 

Sand, wet 20-30 10-30 0.05-0.09 0.57-0.70 

Sandstone, dry  2-3 0.17-0.21 0.31-0.44 

Sandstone, wet  5-10 0.09-0.13 0.35-0.49 

Limestones 4-8  0.11-0.15 0.37 

Limestone, dry  7 0.11 0.35 

Limestone, wet  8 0.11 0.25-0.44 

Shales 5-15  0.08-0.13 0.33-0.40 

Shale, wet  6-9 0.10-0.12 0.18-0.44 

Silts 3-30  0.05-0.13 0.18-0.44 

Clays 5-40  0.05-0.13 0.16-0.44 

Clay, dry  2-6 0.12-0.21 0.40-0.70 

Clay, wet  15-40 0.05-0.08 0.16-0.25 

Soil, sandy dry  4-6 0.12-0.15 0.40-0.49 

Soil, sandy wet  15-30 0.05-0.08 0.16-0.25 

Soil, loamy dry  4-6 0.05-0.08 0.40-0.49 

Soil, loamy wet  15-30 0.07-0.09 0.22-0.31 

Soil, clayey dry  4-6 0.12-0.15 0.40-0.49 

Soil, clayey wet  10-15 0.08-0.09 0.25-0.31 

Coal, dry  3.5 0.16 0.53 

Coal, wet  8 0.11 0.35 

Granites 4-6   0.12-0.15 0.40-0.49 

Granites, dry  5 0.13 0.44 

Granites, wet  7 0.11 0.37 

Salt, dry 5-6 4-7 0.11-0.15 0.37-0.49 
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One variable that has a large impact on a GPR’s performance is the permittivity.  

Table III shows the relative permittivity and electromagnetic wave velocity for common 

subsurface materials. The amount of energy that is reflected at the boundary of two media 

with different permittivity is given by the Fresnel coefficient. For air to soil with 

permittivity, εr, and permeability, 𝜇r, the index of refraction (Fresnel reflection coefficient) 

is described by: 

                                         𝑛 =  √
𝜖𝜇

𝜖𝑜𝜇𝑜 
 =   √𝜖𝑟  𝜇𝑟                                               (5) 

This relationship is used to illustrate the changes in the electromagnetic waves at 

the interface of two materials with different permittivity and permeability in the results 

section below. One observes that electromagnetic waves pass through the earth and the 

receiving antenna records the timing and magnitude of the arriving energy. A GPR image 

is actually an image directly related to the dielectric properties of the subsurface. The 

dielectric constant controls the velocity and the path of electromagnetic waves, including 

those reflected off objects below the surface. 

There are many versions of the 3D-FDTD code. Some are readily available for 

download on the internet. Commercial versions of the code and versions that are reported 

in scholarly journals come in packages that are not open source, and are not available for 

researchers. For this reason, a GPR model and simulation program implementing FDTD 

techniques was developed in MATLABTM. 

Many different algorithms exist for target detection and identification, noise and 

interference suppression, removal of direct and air wave effects and correction of 

attenuation losses. The input data for the research and comparison of these algorithms is 

provided by the FDTD techniques implemented in the MATLABTM code.  
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Many different algorithms exist for target detection and identification, noise and 

interference suppression, removal of direct and air wave effects and correction of 

attenuation losses. The input data for the research and comparison of these algorithms is 

provided by the FDTD techniques implemented in the MATLABTM code.  

Previous researchers have successfully used 3D-FDFD techniques to investigate 

some aspects of a GPR’s performance. [Yee 1966, Belli 2010] While helpful, these studies 

produced only limited results. Under some physical soil conditions, the recognized 

landmine signature, a typical target, possesses high quality contrast while under other 

conditions no signature is detected. Fritzsche demonstrated via modeling that GPR signals 

at 900 MHz would be strongly attenuated in moist soil. [Fritzsche 1995] Trang found 

through simulations and experiments with a GPR emitting signals operating at 600-800 

MHz, that nonmetallic mines were easier to detect in moist soil.  

The FDTD computer model implemented as part of this study facilitates the 

analysis of complex dielectric constant of soil and attenuation of GPR signals. In addition, 

the system model is capable of plotting the complex dielectric constant of soil coupled with 

the attenuation of GPR signals versus soil physical properties.  

To predict the performance of electromagnetic sensor sub-systems, it is common 

practice to use models that estimate the soil’s characteristics including dielectric properties. 

Trang found that no current model exists to completely describe all the electrical properties 

of a soil type. [Trang 1996] Measurements to baseline GPR operational performance made 

at many sites worldwide are helpful but still leave a great deal unknown due to uncertainties 

caused by factors such as soil composition, layering, clutter, rock and other undesired 

artifacts recorded in the measurement. Alternatively, the FDTD computer models and 
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simulations allow the variables associated with GPR systems to be researched and 

characterized. 

FDTD techniques model many variables that are controllable while some variables 

are not. Using FDTD synthetic data allows one to control what might otherwise be 

undefined or uncontrollable variables. The systems engineering goal for the simulations is 

to find bounds for the input values of the uncontrollable variables which make the systems 

performance predictable and manageable. Thus a GPR system design can be optimized to 

effectively handle a wider variety of operational conditions. 

Figure 16 shows a B-mode image of pavement thickness. A B-mode image is 

produced by sweeping a narrow beam while transmitting pulses and detecting echoes along 

a series of closely spaced scan lines. The algorithm for B-mode image simulation and 

processing includes calculation of the amplitude and two-way time delay of a signal 

reflected from each layer of a multi-layered media; simulation of echo signals, clutters, 

speckle and impulse noise; construction of a synthetic range profile; and image formation. 

 

 

 

 

 

 

 

 

Figure 16. Example of a B mode plot [DOT 2015] 
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Belli et al. provided an excellent example of a subsurface tunnel modeled in FDTD, 

as illustrated in Figures 17 and 18. [Belli et al. 2010]  

 

 

Figure 17. 3D tunnel geometry and detail of y − z plane indicating sensor location when θ 

 = 0° [Belli et al. 2010]  

 

 

Figure 18. 3D-FDTD simulated B-scan contours  

(air-filled tunnel buried in sand with backgrounds removed) [Belli et al. 2010] 
 

These simulations show how measured GPR data can be faithfully modeled in 

FDTD and how FDTD simulations can be used to model a GPR system’s performance. It 

shows that the FDTD model produces Typical B-scan contours and the extracted 
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hyperbolas for the tunnel example that can be seen in Figure 18 with the background 

reflection at the air/sand interface removed. Four angles are selected for 3D B-scan 

simulation: 0°, ≈23.96°, 45° and ≈ 53.13°. The hyperbolas extracted from the B-scan 

simulations were compared to a library of hyperbolas generated by 2D FDTD to determine 

the angle of the GPR waves travel path. By comparing the angles from the simulations with 

measured data, these angles were found to produce the B-scans that most closely match the 

measured ones. The results are summarized in Table IV. The determined angles are well 

matched to the actual angles. Again, and as expected, the case of θ = 45◦ results in the 

largest error in determined θ.  

Table IV. Tunnel Example Correlation Results [Belli et al. 2010] 

3D simulation 
angle, Θ 

Best 2D 
correlation 

Maximum error 
(distance from tunnel in 

s-direction) 

Mean error 

0° 0° 180.0 ps 

at 2.25 m 
73.9 ps 

arctan (4/9) 

≈ 23.96° 
24° 93.8 ps 

at 2.63 m 
38.0 ps 

45° 24° 152.1 ps 

at 3.39 m 
47.8 ps 

Arctan (4/3)  

≈ 53.13° 
54° 535.9 ps 

at 4.0 m 
206.2 ps 

 

4.1.3 Simulation Results 

This section contains the results of MATLABTM Fresnel reflection coefficient models 

and TDFD models and simulations that clearly demonstrate, at different levels of fidelity, 

how the researcher can vary the media and targets buried in the media to systematically 

evaluate the GPR’s performance. Using the framework, without surrogate models, simple 

models like the ones presented in these simulation results are used to evaluate individual 
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variables and that the higher fidelity FDTD model provides highly accurate results of the 

GPR’s performance.  

Dependence on Frequency: System analysis begins by selecting one input and 

determining its effect of the system’s performance. If one extends the analysis of system 

inputs to the effects of frequency on the depth and resolution like that presented by GST, 

the results shown in Table V show the relationship between resolution, "blind" zone and 

reflection depth with reference to the antenna used. [GST 2012] The simulated 

measurements are made in a media whose relative dielectric permittivity, εr = 4.0 and the 

specific attenuation is 1 to 2 dB/m. Reflection depth is the detection depth of a flat 

boundary with reflectance equal to 1.  

Table V. Frequency Dependence [GST 2012] 

 Antenna 
Parameter 2 GHz 900 MHz 500 MHz 300 MHz 150 MHz 75 MHz 38 MHz 

Resolution, m 0.06-0.1 0.2 0.5 1.0 1.0 2.0 4.0 

“Blind” zone, m 0.08 0.1-0.2 0.25-0.5 0.5-1.0 1.0 2.0 4.0 

Depth, cm 1.5-2 3-5 7-10 10-15 7-10 10-15 15-30 

 

Controlling Conductivity: The 1D-FDTD model, a one-dimensional version of FDTD, 

allows one to investigate the effect of controlling one variable at a time. Figure 19 shows 

the results of a FDTD simulation where the specific conductance, σ, of the media is 

controlled and set to 5.0 Siemens/meter, the relative electrical permittivity, εr, set to 1.0, 

the frequency set to 2 GHz and with a grid dimension of dx = 0.75 cm or 20 divisions per 

wavelength. The figure shows the attenuation of the fields in this media as function of time. 
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Figure 19. Example of Controlling Sigma 

Controlling Permittivity: Another example of system analysis by controlling one variable 

at a time is the constituent property of permittivity. Permittivity is a property that describes 

the ability of the media to store electric charge. It can also affect the frequency, wavelength, 

or amount of energy that is transmitted or reflected.  

A graphic showing the boundaries and reflections from layers of different 

permittivity is shown in Figure 20. The reflection and transmission of the electromagnetic 

waves at each earth media layer interface depends upon the difference of the permittivity 

of each layer. The signal received by the GPR receive antenna sub-system is a mixture of 

the reflection and delays propagating through the multi-layer paths. A representative 

profile for the different layers is presented. 
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Figure 20. Controlling Permittivity [Hebert et al. 2012] 

The reflection and transmission coefficients for two layers with relative 

permittivity’s of εr1 = 2.0 and εr2 = 4.0 is shown in Figure 21. The reflection and 

transmission amplitude coefficients are shown for both perpendicular and parallel 

polarizations of EM waves incident from normal to 90 degrees. For εr1 = εr2, there is total 

transmission and no reflection.  
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Figure 21. Fresnel reflection and transmission coefficients [Hebert et al. 2012] 

Figure 22 shows the ability of the single dimensional 1D-FDTD simulation to 

model the effects of different values of permittivity on the propagation of electromagnetic 

waves. The specific conductance of the media is set to σ = 0 Siemens/m and the value of 

permittivity is controlled at εr = 1.0 and εr= 10. The media is nonmagnetic with permeability 

equal to free space, μ0. The simulation shows how εr affects both the frequency and the 

speed of propagation. Both graphs show 12 nano-seconds of propagation. The higher the 

εr, the slower the wave propagates. This delay gives insight into how deep a reflecting target 

might be if the εr is known or a method to determine the εr if the depth of the reflecting 

object is known. 

Using the multi-fidelity framework presented in Section three, this exercise allows 

one to understand GPR physical processes better by controlling variables that are modeled; 

first by a series of simple models followed by the more complex high fidelity FDTD model. 

It demonstrates the ability of the model to perform a bistatic polarimetric simulation of the 

GPR. Using a simple FDTD model and simulation with perfectly matching boundary 

conditions, a FDTD simulation of rods at half a meter depth was performed. The 
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homogeneous media show the expected result that polarized electromagnetic waves induce 

larger currents in the direction in which the wave and rod are oriented. Exposed to a 

polarized EM wave in the x direction, the x-directed rod has larger induced currents in the 

x-direction, while the y-directed rod has a strong tendency to induce currents in the y-

direction if the EM wave is polarized in the y direction. This explains why GPR migration 

algorithms, developed on a matched-filter response basis, are used to both detect and 

determine the shape of a buried pipe like object. 

 

Figure 22. Effect of permittivity on propagation [Hebert et al. 2012] 

Using the high fidelity FDTD model, Gürel et al presents an excellent example of 

prism modeling. [Gürel et al. 2001] In Figure 23, the FDTD model simulates two 

conducting prisms of 21 x 21 x 16 cells that are buried five cells under the ground and 

separated by twenty cells. The A-scan waveforms are calculated and presented next to B-

scan results. In Figure 22, the higher fidelity FDTD model shows the scattering results for 

a cavity and a dielectric object, with a permittivity of εr = 1.0 and εr= 8, respectively, are 
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presented. The two targets are buried twenty cells apart and five cells under the ground that 

is modeled with a relative permittivity of εr = 4.0. Figure 22 illustrates the typical A-scan 

and B-scans expected and demonstrates the ability of the FDTD model to simulate the GPR 

system’s performance with respect to one than one variable at a time. In Figure 24(a) the 

targets are dielectric objects and a cavity in the ground. Note that the amount of reflection 

from the two objects closely follows the Fresnel reflection and transmission coefficients 

illustrated in Figure 19 for layers with the values of εr = 4.0 for the soil and εr = 8 for the 

dielectric object and εr = 4.0 for the soil and εr = 1 for the void. The results in the return 

from the cavity being larger than the return from the dielectric object. The results of this 

FDTD simulation are consistent with those using lower fidelity Fresnel reflection and 

transmission coefficients models to calculate the reflection from the objects. 

In the second simulation, the dielectric object is replaced by a conducting prism. 

The reflection from the perfectly conducting prism is nearly 100% and much larger than 

the reflection of the cavity. 

 

Figure 23. Two perfectly conducting prisms buried 5 cells under the ground and 

separated by 20 cells [Gürel et al. 2001] 
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Figure 24. Two objects buried 5 cells under the ground and separated by 20 cells. (a) a 

cavity and a dielectric object and (b) a cavity and a perfectly conducting prism [Gürel et 

al. 2001] 

 

The MATLABTM Fresnel reflection coefficient models and TDFD models and 

simulations clearly show how the researcher can vary the media and targets buried in the 

media to systematically evaluate the GPR’s performance. Simple models are used to 

evaluate individual variables and the HF FDTD model provides highly accurate results of 

the performance. These experimental results yield the conclusion that multi-fidelity models 

can be used to accurately simulate the GPR measurements and to faithfully analyze GPR 

data.  

4.2 Nuclear Electromagnetic Pulse Bounded Wave Simulator (NEMP/BWS) 

     Example  

 

     4.2.1 Requirements 

Congressman Trent Franks, in testimony to the Cybersecurity, Infrastructure 

Protection and Security Technologies Subcommittee on September 9, 2012, expressed 

concern that: “the US society and economy are so critically dependent upon the availability 

of electricity that a significant collapse of the grid, precipitated by a major natural or man-

made electromagnetic pulse (EMP) event, could result in catastrophic civilian casualties 
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(and that) this conclusion is echoed by separate reports recently compiled by the DoD, 

DHS, DOE, NAS, along with various other government agencies and independent 

researchers.” [Frank 2012] To answer these and similar concerns, the Naval Ordnance 

Transient EMP Simulator (NOTES), illustrated in Figure 24, needed to be modified to 

allow threshold EMP testing from 1 to 100 kilovolts per meter (kV/m) with roughly 

constant (standardized) threat waveform characteristics. The NOTES was originally 

designed as a full threat simulator with an output of 100kV/m. Testing levels in the target 

area needed to be adjusted to lower voltages from 1 kV/m to full threat strength to 

determine upset levels, reset levels and destruction levels for testing critical infrastructure 

electronic systems like power switches and telephone switches. The NEMP/BWS was 

designed to cost effectively produce a wide range of threat levels while maintaining the 

proper standardized EMP threat waveform characteristics needed to assess the effects of 

an EMP pulse on electronic systems. 

 

 

Figure 25. The NOTES NEMP/BWS 
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4.2.2 Stakeholder Analysis 

  

Figure 26. Stakeholders in the Modification of NOTES 

Figure 26 breaks the stakeholders into groups including the Project Systems 

Engineering Team that designed and modified NOTES. The Project Systems Engineering 

Team balanced the needs of all the stakeholders. The Congressional EMP Commission 

needed test data on the Nuclear EMP susceptibility and vulnerability of critical 

infrastructure systems for inclusion in their report to Congress on the ability of the United 

States to withstand a widespread EMP attack. The Naval Surface Warfare Center Dahlgren 

Division (NSWCDD) Environmental Office and Safety Office wanted assurance that the 

modifications would not adversely affect the environment around NOTES including 

workers, the public, natural resources and wildlife. The Safety Office required a new 

Standard Operating Procedures and Safety Assessment before the modified facility could 

operate. The NOTES Facility Operations needed its personnel trained to address any 

changes to the operating procedures and NOTES Maintenance Crews had to know how to 

maintain the modified facility. The Ordnance Range Operators had to issue passes and give 

clearance for crews to work at the NOTES facility as it is located on an active explosive 
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ordinance range. The NSWCDD wanted the new NOTES designed and the modifications 

made at the lowest technically achievable cost. 

     4.2.3 Analysis of Alternatives 

For the analysis of alternatives (AoA) on how to modify the NOTES facility, the 

overriding considerations were the stakeholder needs, cost and performance. A diagram of 

the NOTES physical architecture that shows its major sub-systems and their parts is shown 

in Figure 26. The alternatives analysis effort provided the information needed by local 

decision makers to consider the costs and benefits of the proposed strategies to address the 

needed modifications to the NOTES System; the single alternative that was advanced into 

implementation was to modify only those parts of NOTES necessary to meet the 

requirements of all the stakeholders. These subsystems within the Pulser Control System 

are unshaded in Figure 26. The shaded systems in this figure required no modification: the 

Bounded Wave Section, the Dielectric Oil Handling System and the Sulfur Hexafluoride 

(SF6) Gas System. Making the most use of the existing unmodified subsystems allowed 

configurations and measured data from the unmodified facility to be used as a guide in the 

analysis of the new one. The selection of subsystems to be changed also allowed many of 

the regulatory documents and approvals to remain intact such as the environmental 

assessment and operating procedures for all the unchanged systems. This system level AoA 

chosen alternative presented the least risk at the lowest price possible. It, also, sets the stage 

for the component level AoA that was conducted by applying the modeling framework 

presented in this dissertation. 
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Figure 27. NOTES Physical Architecture 

(No modification was required to the shaded boxes) 

 

     4.2.4 Demonstration of the Framework  

 The modeling framework was demonstrated using information and measured data 

from the unmodified and modified NOTES. The NOTES was modified in 2008, using a 

PSPICETM model similar to the one presented in this paper. This measured data provides 

an excellent real physical industrial, rather than academic, example for demonstrating the 

framework presented in this paper. For this research and demonstration, an updated 

PSPICE™ model and several new multi-fidelity and surrogate models and simulations 

were used to generate the figures and data presented in this study. 
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Figure 28. N-Stage Marx Generator  

 

 

Figure 29. Simple RLC Circuit 

          4.2.4.1 Low Fidelity RLC Circuit Model and Simulation 

Low fidelity electrical models are simplifications of Maxwell’s equations in the 

form of lumped circuit parameters like resistance (R), capacitance (C), voltage (V) and 

current (I) that are modeled by simple relationships such as Ohm’s or Kirchhoff’s laws. 

[Bobrow 1995] The NOTES system includes: the MARX generator power source (Figure 

29), a peaking capacitor to sharpen the rise time, a bounded wave section to provide 

uniform electrical fields in the target area (Figure 25) and a termination impedance section 

to prevent reflections. The measured data from the legacy 24 stage Marx Generator, shown 

in Figure 30, was used to determine the lumped circuit equivalent parameters of that 

component. The legacy generators were used because with them, the ability to perform 

EMP testing at the full and half threat levels of 100 KV/m and 50 KV/m had previously 
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been demonstrated and was well documented by tests on military systems such as the 

Navy’s Standard Missile. A few years ago this Marx generator had been totally 

reconditioned and had proven very reliable and repeatable during operational tests. 

Measurements of the simulator’s output were already recorded. Using this source, NOTES 

is capable of producing the standard threat waveform and no development was necessary 

to meet the full threat EMP test requirement. The waveform produced by the 24 stage Marx 

source was used as the standard for designing and developing the eight stage and single 

stage sources that were required to produce the threat waveform across the rest of the 

required range of 1kV/m to 50 kV/m. A key requirement for this effort was that the output 

of any other sources developed had to match the 24 stage output waveforms characteristics 

in the target area, but at the desired reduced output levels. 

 

 

 

 

 

 

 

 

Figure 30. The NOTES Legacy 24 stage Marx Generator 

Figure 30 shows the 24 stage Marx as installed at NOTES. The large white ring at the 

end wall is the peaking capacitor installed in the oil tank at the output of the Marx. The 

peaking capacitor is 137.16 centimeters in diameter including the 7.62 centimeter white 

field grading ring around the outside. It is located at 5.08 centimeters inches from output 
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wall. This peaking capacitor’s output is determined largely by its adjustable (screw-in type) 

electrode at its output to where it connects to the transmission line. This size and spacing 

results in a peaking capacitor of approximately 240 Pico-Farads when the capacitor is 

submerged in DIALA-XTM transformer oil. The trays that make up the legacy Marx are 

shown uninstalled in Figure 31. The legacy Marx consists of 14 trays, 12 trays that each 

contain two Marx stages for a total of 24 stages. There is one Trigger/Charging Tray 

interface to the charging system and an output tray is connected to the peaking capacitor. 

A closer look at the uninstalled tray shows that it contains the two capacitors, two spark 

gaps and the trigger and charging resistors associated with two full stages of a Marx. A low 

fidelity model of the Marx’s operation is illustrated in Figure 28. 

 

Figure 31. Capacitor Trays from the Legacy Marx 

Applying the modeling framework (Step 2) a low fidelity lumped parameter simple 

over-damped series RLC model (Figure 29) was selected to reverse engineer the measured 

data from the unmodified NOTES output waveform to determine the lumped circuit 

electrical parameters of a simple NOTES model. This low fidelity physics-based model of 

the existing NEMP simulator is an over-damped RLC circuit: 
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        𝑖𝑐(𝑡) = 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
= 𝐶𝑆1𝑉𝑖 (

𝑒𝑆1𝑡

1−
𝑆1
𝑆2

) + 𝐶𝑆2𝑉𝑖 (
𝑒𝑆2𝑡

1−
𝑆2
𝑆1

) Where  𝑆1 =
−𝑅

2𝐿
+ √(

𝑅

2𝐿
)
2

−
1

𝐿𝐶
 and   

             𝑆2 =
−𝑅

2𝐿
− √(

𝑅

2𝐿
)

2

−
1

𝐿𝐶
                                                                                                                  (6)  

 

Continuing the framework into Step 3, this low-fidelity physics-based analog RLC model 

(where S1 and S2 are the roots of the solution of the series RLC circuit) was used to produce 

a sparse sample set of basis points for a Kriging surrogate model. Using the systems 

engineering life cycle process, this example extends the application of these surrogate 

models to the design of an entire system using a series of increasing fidelity physical 

models, starting with the lowest fidelity physical model necessary to answer the problem 

or question. The NEMP/BWS example uses three physics-based multi-fidelity electrical 

and EM models and two surrogate models. The design of experiments for these two 

surrogate models is highlighted in Figure 32. 

 

Figure 32.Design of Experiment for Surrogate Models used in the design of the 

NEMP/BWS. 
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The Kriging model results (Figure 33) were used to analyze the lumped circuit 

parameters of the NOTES system. The results of the Kriging model were compared with 

the total analog solution (Figure 34). The analog solution, programmed in MATLABTM, 

took two minutes to compute and plot on a Windows 64 bit computer with an Intel quad 

core eight thread CPU; the Kriging model, using the MATLABTM DACE toolbox, took six 

seconds on the same computer. 

 

Figure 33. Kriging Approximation (dots are HF model produced basis points) 

 

Figure 34. Analog Solution 
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Applying step three of the framework a second time, a Kriging surrogate model 

was used to reverse engineer the values of the resistor, R, and the inductor, L, using an 

analog object equation for the rise time that was developed using Equation 3. An expression 

for determining the time for the current to go from 10% to 90% of its maximum value was 

evaluated for each resistor inductor pair (R and L). Using the DACE Kriging Toolbox, a 

correlated linear kernel function was used to estimate the rise time (10% to 90% of 

maximum current) based on 60 basis points (R and L combinations) obtained by running 

the low fidelity RLC model 60 times. [Lophaven 2002] The number of basis points was 

selected based on checking the model’s results by cross validation and examining the size 

of the mean square deviation. A graphic example of this is presented below. The Kriging 

estimate then allowed interpolation of the solution to a dense grid and selection of 

appropriate R and L values that can provide the required rise time. The Kriging solution 

was compared to the analog solution. (Figures 35 and 36) 

 

Figure 35. Analog Model Graph of rise time differences 
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Figure 36. Kriging Approximation of rise time differences. (Dots at basis points) 

 The Kriging model is a lower-fidelity model than the RLC analog model. It 

provides the solutions for R and L with much less computational time and resources when 

compared to higher-fidelity RLC model at a fraction of the cost. For this simple example, 

the time and cost difference is relatively small when compared with a high fidelity model 

because the object function (RLC analog model) is not computationally intensive. If the 

complex model took 60 times as long it would result in even larger savings. For example, 

a 10,000 run regression analysis on a high fidelity model that takes one hour for one run 

compared to a surrogate model that takes one minute results in a savings of over 100 days 

of computation time. The plot of the values of R and L for a rise time of 10 nano-seconds 

(ns) is presented for the analog model in Figure 35 and for the corresponding Kriging 

approximation in Figure 36. In these figures, the interpolated results of the Kriging 

surrogate model closely match those of the full analog solution with an overall mean square 

error of less than 0.1ns for 60 Kriging basis sample points. 
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           4.2.4.2 Medium Fidelity PSPICETM Model 

At Step 4, we determine that although the first RLC physical model was needed to 

determine the lumped circuit’s resistor and inductor parameters, it was not adequate to 

answer the total design problem which requires the determination of the settings for the 

breakdown of the peaking capacitor switch in the NOTES source as a function of the output 

electrical field. The peaking capacitor switch closes due to over-voltage at a time 

determined by the type of dielectric and by the adjustable distance across the switch. 

Therefore, at Step 5 we go back to Step 2 where we chose a medium fidelity PSPICETM 

model (Figure 37) to determine the values for these other parameters needed to produce 

the simulated electric field threat waveform in terms of rise time and wave shape and to 

vary the Marx Generator so its output ranged from 1 to 80 kV.  

 

 

Figure 37. PSPICETM Model of the NOTES. 

 

Figure 38. The NOTES Simulator Marx Generator. 
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The PSPICETM model has higher fidelity than the RLC Model because it contains 

more system parameters such as: timing switches for charging, a peaking capacitor to 

provide the fast rise time required and a model of the target zone configuration as a short 

transmission line. Using the PSPICETM model for parametric analysis showed that if the 

equivalent capacitance for each pulser is modified to be 10 nano-Farads (nF) and the basic 

geometry of the Marx generator, peaking capacitor and transition zone (Figure 38) 

remained roughly the same, then values from the simpler models could be used to vary the 

input voltage and the second switch closing time to produce the required threat waveform 

with the correct rise time and waveform shape. Simple curves that relate the breakdown 

voltage of transformer oil (Diala-X) and SF6 (an electro-negative gas) to the product of the 

pressure and distance were used to determine when the peaking capacitor would self-

breakdown. [Ushakov 2004] For the two lowest voltages, the gap could not be set precisely 

enough in oil, so a pressurized spark gap filled with SF6, was placed between the peaking 

capacitors output electrodes. Analysis of the PSPICETM results indicated that the required 

output switch closing time was 20 ns and that three Marx sources were necessary. Table 

VI presents a summary of the nominal operating conditions for the NOTES simulator. 

Table VI. Nominal Notes Simulator Operating Conditions 

Electric 

Field 

Target 

Area 

(kV/m) 

Marx 

Voltage 

output 

(kV) 

Marx 

Charge 

Voltage 

(kV) 

Gap 

Distance Oil 

BD curves 

(inches) 

Gap 

Distance 

SF6 

(inches) 

Turns 10 

(turn/inch) 

Pressure 

(PSI) 

Dielectric 

100 1130 47 9 N/A 90  Diala-X 

90 1017 42.3 8.5 N/A 85  Diala-X 

50 565 23.5 4.9 N/A 49  Diala-X 

25 282.5 11.75 1.89 N/A 19  Diala-X 

7 79.1 3.29 0.29 N/A 3  Diala-X 

3.5 39.55 1.645 N/A 5/100 N/A 10 SF6 

1.5 16.96 0.705 N/A 5/100 N/A 5 SF6 
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 The electric field in the target area, that was calculated by the higher fidelity 

PSPICETM model (Figure 39), compares closely in shape, rise time and magnitude to the 

electric field measured in that area (Figure 40). The difference in the time of the peak of 

the measured waveform is an attribute of the measurement system and the peak of the 

simulated waveform – an attribute of the simulation output switch closing time. The rise 

time is the same. 

 

Figure 39. NOTES Output Waveform calculated using PSPICETM 

 

Figure 40. NOTES Output Waveform (measured) 
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          4.2.4.3 High Fidelity FDTD Model 

Again at Step 4, we determine that because the RLC and PSPICETM models 

represent NOTES as lumped circuit electrical components, they do not accurately model 

the electric fields in the target area in the bounded wave portion of NOTES: this requires 

an accurate high fidelity EM model. Going back to Step 2, we chose the high fidelity FDTD 

model because the bounded wave portion is well modeled by the differential 

implementation of Maxwell’s equations. FDTD codes, that implement the total form of 

Maxwell’s equations, are computationally intensive, requiring considerable hours and 

computational resources to analyze complex EM problems. A problem with a grid size of 

30 x 30 x 30 cells can take about four hours on a Windows 64 bit computer with an Intel 

quad core eight thread CPU. 

The FDTD method has been demonstrated to accurately model the performance of 

a bounded wave EMP simulator as well as allow uncertainty analysis of the BWS. [Lu et 

al. 2008; Wei et al. 2011] “The FDTD method belongs in the general class of grid-based 

differential time domain numerical modeling methods.” [Smith and Furse 2012] Time-

dependent Maxwell’s or Telegrapher’s equations are discretized using central-difference 

approximations for the space and time partial derivatives. [Furse 2010] Only the bounded 

wave portion of the simulator was modeled, whereas in the other two methods presented, 

the RLC and PSPICETM models, the entire NOTES system was modeled. 

 The measured electric field data points from previous NOTES efforts were used to 

define basis points for the objective functions in a two-step surrogate model. Koziel used 

this two-step approach for small microwave filters. In contrast to that approach, the entire 

BWS of NOTES was modeled. Koziel explains this approach as “Our technique is based 
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on utilizing an ‘intermediate’, coarse-discretization EM model.” [Koziel 2011] For the 

second step, a surrogate is used to turn a coarse-grid physical model output of basis points 

into a fine-grid surrogate model approximation. 

For the NOTES bounded wave section, the FDTD grid discretization used larger 

coarse-discretization cells, eight times larger than usual, sized to nearly the stability limits 

set by the Courant condition. The Courant condition is given by: 

 

                          ∆𝑡 ≤
√∆𝑥2+∆𝑦2+∆𝑧2

𝑐
  where c is the speed of light in vacuum, 299,792,458 m/s (7) 

Here t is the time of propagation of the wavefront diagonally across the maximum cell  

dimension. During each time step of the simulation, six field quantities are calculated for 

each cell. Using the larger discretization cell size decreases the number of total cells. By 

decreasing the number of cells by a factor of eight in each direction, the decrease in 

theoretical computation time is 98.4%. The result is a surrogate model of the FDTD model 

that uses a “coarser” set of basis points. “Because the coarse model is supposedly physics-

based, the corresponding surrogate is expected to offer a good match over the entire region 

of interest. For the same reason, Surface Mapping surrogates (of physical models) typically 

need just a few basis points to achieve reasonably good accuracy.” [Koziel 2011] This 

makes using surrogates for physics-based models attractive because significant 

computational time and cost savings can be realized without totally sacrificing accuracy. 

The time required for the one run with the FDTD code for the Bounded Wave System is 

presented in Table VII.  
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Table VII. NOTE BWS Computation Times 

Researcher What 
was 

modeled 

Boundary 
Condition 

Type 

CPU Computer 
Memory 

Number 
of Cells 

Number 
of Time 
Steps 

Time to 
complete 

simulation 
(min) 

20,000 
time 
steps 
(min) 

40,000 
time 
steps 
(min) 

Hebert 2015 BWS 
section of 
NOTES 

Perfect 
Matching 

Layer 

1 processor 
on Quad 

Core CPU 
at 3.2 GHz 

16 GB 372,000 20,000 75 75 150 

 

The total grid space consisted of 372,000 cells including eight cells layers at the boundaries 

to implement the Perfect Matching Layer boundary condition. To complete one run with 

on a Windows 64 bit computer with an Intel quad core eight thread CPU using 20,000 time 

steps required 75 minutes and 150 minutes for 40,000 time steps. 

 

Figure 41. NOTES FDTD Calculated Waveform (in the target area) 
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Figure 42. NOTES Measured Output Waveform (in target area) 

 

Figure 43. NEMP Standardized Threat [(IEC 61000-2-9)] 

Figure 41 shows the TDFD output electric field calculated in the working volume of the 

BWS. Figure 42 shows the measured output waveform in the working volume. Figure 43 

is the standardized unclassified NEMP threat waveform. [International Electrotechnical 

Commission, IEC 61000-2-9)] A standard Kriging surrogate model was developed for this 

calculated field. Figures 44 and 45 show the original FDTD calculated waveform and the 

results of its Kriging surrogate model. Figures 44 through 46 show the true value of the 

Kriging method. By using sufficient basis points, the plots closely match the FDTD 

calculations. Figure 44 fails in the framework because only five basis points were used. 
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Figure 45 shows that by adjusting the surrogate model to 15 basis points significantly 

reduced the mean square error of the approximate solution as shown in Figure 45 to less 

than 0.1 V/m. Comparing the use of a Kriging surrogate model’s computing time, less than 

one minute and that of the FDTD model in Table VII, 75 minutes, provides a dramatic 

example of the difference in runtimes between using a High Fidelity Model and a surrogate 

model. The surrogate model performed its calculation and outputs over 75 times quicker. 

These reductions can be realized many times over when optimizing system elements or 

options during component or system architectural synthesis on any size computer. For 

example to perform a simple regression analysis of 1000 inputs would take 75,000 minutes 

but only 75 minutes using the surrogate model. When you compare the 75 minutes to the 

9 seconds required to produce the Kriging Model with 15 basis points of the BWS 

waveform’s output in Figure 45, the difference in computation time is even more dramatic.  

 

Figure 44. Kriging Model of FDTD Output Field (5 Basis Points)  
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Figure 45. Kriging Model of FDTD Output Field (15 Basis Points)  

 

 

Figure 46. The MSE of the Kriging Plot (# basis points) 
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     4.2.5 Cost 

Most program managers justified their M&S investment based on one or more of 

the following: reducing design cycle time; augmenting or replacing physical tests; helping 

resolve limitations of funds, assets, or schedules; or providing insight into issues that were 

impossible or impracticable to examine in other ways.” [Brown et al. 2000] An example 

comparison of the costs of using multi-fidelity and surrogate models with other methods 

for the NOTES facility modification is shown in Table VIII. The multi-fidelity and 

surrogate modeling and simulation option is the least expensive option. This option trades 

M&S cost for the number of prototype systems and number of days to test them in the 

Build/Test Option and against time and expense of using high-fidelity models only. The 

return on investment of the physical modeling of complex EM systems comes from the 

trade-off between the relatively low cost of modeling and the higher cost of building and 

testing prototype EM systems. 

Table VIII. Example Comparison of Cost 

Component Purchase Modify By 

Build/Test 

Modify by Multi-

Fidelity & Surrogate 

Models 

Modify by High 

Fidelity Models 

Marx Sources $1M $100K $40K $40K 

Transition Zone $12K $ 0 K $ 0 K $ 0 K 

Antenna $20K $ 0 K $ 0 K $ 0 K 

Termination $10k $0 K $ 0 K $ 0 K 

Testing $6K/day $30K/5 days $120K /20 days $30K/5 days $30K/5 days 

New Facility $500K $ 0 K $ 0 K $ 0 K 

M&S $30K $5K $20K $80K 

Total $1602K $225K $90K $150K 
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     4.2.6 Verification and Validation 

Aydemir states that “Many simulation methods have been developed for the 

solution of EM problems. One of the best ways to evaluate the accuracy of these methods 

is comparing them with actual measurements.” [Aydemir 2011] For the NEMP/BWS 

system-of-systems, the multi-fidelity models were verified and validated to give decision 

makers the confidence to rely on the framework for the acquisition of this type of complex 

system. To validate the models, the measured data from the unmodified existing facility 

was used to verify that the MATLABTM RLC codes were correctly programmed and 

provided reasonable results. The results of the PSPICETM model, a totally separate physical 

model, were used to verify it produced the same results as the RLC model. Finally, once 

the modified NOTES system was built and tested, the electric field outputs generated by 

the three models were compared with the system’s measured outputs. 

     4.2.7 NEMP/BWS Design Summary 

 A framework that uses increasing fidelity physics-based models together with 

surrogate models was demonstrated. Lower fidelity and surrogate models were used, in 

place of higher fidelity models, to investigate variables with significant impact on the 

system’s response. Savings, in addition to the cost reduction in M&S by using the 

framework, also resulted from being able to make maximum use of existing systems and 

only modifying the three pulsers. The models also showed that simple adjustments could 

compensate for most of the uncertainty in values of other components. The three modified 

pulsers, (Marx Sources), installed in the NOTES facility, are shown in Figure 47. 
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Figure 47. Installed Marx sources at NOTES  
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Chapter 5 – Conclusions and Recommendations 

The research documented in this dissertation has been driven by the research 

question “Are there modeling and simulation approaches that make possible the use of 

systems engineering decision making tools by reducing the time and cost of high fidelity 

computational models during the design and development of complex physics-based 

complex systems?” This research stems from the desire to reduce the number of high 

fidelity models and simulations currently used in the design stage optimization of physics-

based systems. The second related but different question: “Can multi-fidelity and surrogate 

models be used in a methodology that enables the efficient allocation of time and cost for 

the optimization and performance evaluation/validation of physics-based systems?” 

suggests that multi-fidelity and surrogate models may reduce the use of time consuming 

and expensive high fidelity models allowing expanded use of systems engineering tools in 

the optimization design stage. The research performed to answer these questions has 

achieved the following objectives: 

1. To develop a novel time reducing framework for the design and development of 

complex physics-based systems by using a mix of variable fidelity physics-based 

models and surrogate models.  

2. To show that this framework for combining increasing fidelity models enables the 

computationally and cost efficient modeling and simulation of complex systems 

and their components.  

3. To demonstrate the framework with physics-based examples and document the 

findings in this dissertation. 
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The methodology and examples documented in this study provide evidence that the 

objectives have been met. In the next part of this section we discuss the key findings, 

followed by the major contributions and finally some suggested avenues for future work. 

5.1 Key Findings from the Research 

There are three key findings from the research documented by this study. They are 

listed here followed by a discussion.  

1.  The framework for using the lowest fidelity that answers the question coupled with 

the choice of further reducing computational time by using surrogate models are key 

enabling methods that allow the use of classical systems engineering tools during 

the design stage optimization of physics-based systems.  

2. The use of multi-fidelity models and simulations can reduce the number of high 

fidelity runs necessary to characterize the problem. (e.g. material characteristics of 

multiple layers of soil in the analysis for Ground Penetrating Radars.) 

3. The methodology of using increasing fidelity M&S to analyze, design and develop 

modifications to the NOTES System was shown to be successful. (e.g. simple RLC 

circuit to analyze the overall performance of the entire NEMP/BWS system.)  

4. The application of multi-fidelity models coupled with the Design of Experiments 

and Surrogate modeling can greatly reduce the time required by high fidelity models 

particularly for parameter optimization, reverse engineering and evolutionary design 

of physics-based systems. (e.g. both system examples.) 

Other findings from the literature search include a number of guidelines for choosing 

and using multi-fidelity and surrogate models. These include:  

 It is important to apply modeling in a way that maximizes its impact; otherwise 

someone will say it is too expensive. 
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 Introduce modeling early on when it can really make a difference. [Nopper 2012] 

 Use the lowest fidelity model that answers the question. 

 Use low fidelity models to identify controllable and uncontrollable inputs. 

 Most problems are ill-defined at the onset. Use low fidelity models to: 

o Identify constraints on the decision variables. 

o Define measures of system performance and an objective function. 

o Determine a range of potential solutions. 

 Use low fidelity models to interrelate the inputs and the measures of performance. 

 Use low fidelity models and simulation to define what is important and what is not, 

and how important various parameters are. 

 The low fidelity models provide insight and good test cases for later higher fidelity 

models. 

 Low fidelity models allow investigations of the sensitivities of the models to 

variations in controlled and uncontrolled inputs. 

 Low fidelity models allow statistical systems engineering methods are used to 

understand and optimize parameters and reduce uncertainty. 

 Ranges of allowed variables found in the lower fidelity models is carefully selected 

may be transferable to models of high fidelity. 

5.2 Other Conclusions with Respect to the Framework  

With respect to the overall approach we conclude: 

 The framework has the potential to allow the use of many Systems 

Engineering tools that could not be used were all modeling and simulation 

performed using high fidelity models only. 
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 The approach allows the generation of far more data that can allow decision 

makers to consider and evaluate more alternative designs and approaches to 

meet stakeholder needs.  

The framework has several desirable attributes:  

 the methodology is extensible and can be used to design and develop any 

physics-based systems;  

 The methodology allows the use of models at any level of fidelity as long 

as the output answers the question that motivated its use;  

 The systems engineer should choose the most efficient lowest fidelity model 

and simulation that answers the design problem or question, satisfies the 

stakeholder’s needs and provides the results that the stakeholder can trust;  

 The methodology is enabled by Systems Engineering that itself is enabled 

by the methodology; 

 The methodology provides multiple steps for the validation of the models. 

For the NEMP example, in the first step, simulation results were compared to the 

analytical formulation. The output of the MATLABTM RLC program was checked against 

basic circuit equations involving Kirchhoff’s voltage and current laws. The second method 

involved comparison of results between codes of increasing fidelity. In this case, the results 

of the PSPICETM simulation of the output electric field in the target area closely matched 

that predicted by FDTD. The final validation step involved the comparison of the M&S 

with actual measurements of the fielded system and the published standardized threat 

waveform.  
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5.3 Conclusions with Respect to Systems Engineering  

Acceptable confidence in M&S requires the ability to statistically characterize 

physics-based phenomena in complex systems where the system parameters or geometries 

are uncertain. The importance of uncertainty in accurate computational electromagnetic 

codes like FDTD has been investigated. [Ajavi, Sewell et. al. 2008; Shen 2010; Chauviere 

2006] To be useful for the application of Systems Engineering tools, a design and 

development modeling and simulation methodology must be: computationally efficient, 

account for possible uncertainties in systems parameters and geometries; produce data to 

allow statistical analysis and estimation of the probability density function of field 

variables and other quantities of interest. [Shen 2010] Using only time consuming high 

fidelity models can preclude the use of many useful systems engineering tools. To solve 

this problem one can either include the variation analysis into the high fidelity code or use 

the methodology developed in this study. Smith and Furse presented an example of the first 

approach with “a new stochastic finite difference time domain (S-FDTD) method for 

calculating the variance in the electromagnetic fields caused by variability or uncertainty 

in the electrical properties of the materials in the model.” [Smith and Furse 2012] They 

found by including statistical variations of the electrical properties directly into the 

traditional FDTD method provides a more efficient method of evaluating the statistical 

variation in the model. [Smith and Furse 2012] The second approach that uses the novel 

time reducing framework resulting from this study for the design and development of 

complex physics-based systems by using by using a mix of variable fidelity models and 

surrogate models has been demonstrated using two examples.  
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This framework for combining increasing fidelity models enables the 

computationally and cost efficient modeling and simulation of complex physics-based 

systems and their components. 

5.4 Further Research Needed  

Future research is still needed to determine the extensibility of the framework. 

Although this framework was successful in the design and development of a complex EM 

system, the NEMP BWS, more research is needed to determine if the technique is 

extensible to other physics-based design and development domains that require expensive 

computational physics-based models like computational fluid dynamics, computational 

physics, or other computational electrodynamics. 
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Appendix A – Low and Medium Scale Models 

Maxwell’s Equations and Lower Fidelity Circuit Analysis from EM Models  

This appendix provides an example of how lower fidelity models can be derived from 

computationally complex ones by applying suitable conditions and constraints. Since 

electromagnetic computational codes are presented in this study, the derivations are 

presented here. There are similar methods for deriving simpler models for most physics-

based computational codes. 

 

 

Figure A-1. Maxwell’s Equations [IHMC 2015] 

 The physics-based equations that are generally accepted as accurate 

representations of electromagnetic phenomena are known as Maxwell’s equations. Figure 
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A-1 provides an overview of the history and interrelationships between the Maxwell 

equations 

 The highest fidelity electromagnetic computational codes model Maxwell’s 

equations in their entirety in either the time domain (i.e. the finite difference time domain 

code (FDTD) that is based on the point or derivative form of the equations) or in the 

frequency domain (finite element models) that is based upon the integral form of the 

equations. The Finite Difference Time Domain code is presented in Appendix B. 

Deriving simpler lower fidelity models 

 By applying the following three constraints, known as the Lumped Matter 

Discipline (LMD), Maxwell’s equations may be transformed into simpler ones that can be 

solved by simple algebra. The LMD provides the basis for the lumped circuit abstraction. 

The three constraints imposed by LMD are: 

1. “The rate of change of magnetic flux, 
𝜕𝜑𝐵

𝜕𝑡
= 0, linked with any portion of the circuit 

must be zero at all times (allowed unique voltage across the terminals of an element) 

2. The rate of change of the charge, 
𝜕𝑞

𝜕𝑡
= 0, at any node in the circuit must be zero for all 

time. A node is any point in the circuit at which two or more element terminals are 

connected using wires (allowed unique current across the terminals of an element) 

3. The signal timescales must be much larger than the propagation delay of electromagnetic 

waves through the circuit. 
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Figure A-2. LMD constraints with an arbitrary two terminal circuit element 

 

 Applying the LMD constraints results in a lumped circuit element that is an 

abstract representation of a component with a complicated internal behavior. Circuit 

models made up of these lumped circuit elements present an abstract representation of 

interrelated physical phenomena. Using these elements, we can move from the complicated 

calculus form of Maxwell’s equations into two simple laws that allow the use of simpler 

algebraic equations. This allows Maxwell’s equations for voltages and currents across a 

variety of lumped circuits to be modeled by two simple algebraic relationships such as 

Kirchoff’s Voltage Law (KVL) and Kirchoff’s Current Law (KCL): 

 Kirchhoff’s Current Law (point rule or junction rule) is based upon the 

conservation of electrical charges. The sum of all currents into and out of any node must 

be zero: what comes in the node must go out. 

 

∑ 𝐼𝑘 = 0

𝑛

𝑘=1

 

Kirchhoff’s Voltage Law (loop rule) is based upon the conservation of energy. The 

sum of all voltage sources and drops around a loop must be zero. 
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∑ 𝑉𝑘 = 0

𝑛

𝑘=1

 

 
 

Figure A-3. Example Lumped Parameter Circuit 

 

The voltages around the loop according to KVL add up to be zero:  

V + VR1 + VR3 = 0; 

and the currents into and out of Node A according to KCL add up to be zero:  

i1 + i2 + i3 = 0 

Devices such as resistors are passive such that the currents and voltages are 

instantaneous (no delay) and are not a function of time. Devices that store energy either as 

charges like capacitors or in magnetic fields like inductors have memory and are a function 

of time. The next higher level of fidelity includes these storage elements. 

 

 

 

 

 

Figure A-4. Simple RLC Circuit 

If we consider a circuit with a source, a resistor, an inductor and a capacitor (an 

RLC circuit) where V is the source voltage, R is the resistance, L is the inductance of the 
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inductor, C is the capacitance of the capacitor and I is the current through all the 

components, KVL tells us that: 

𝑉𝑅 + 𝑉𝐿 + 𝑉𝐶 = 𝑉𝑆 

The voltages and currents through and across the elements are given by: 

𝑖 = 𝐶 ∙  
𝑑𝑉𝐶

𝑑𝑡
 

𝑉𝑅 = 𝑅 𝑋 𝑖 = 𝑅𝐶 ∙  
𝑑𝑉𝐶

𝑑𝑡
 

and 

𝑉𝐿 = 𝐿 ∙  
𝑑𝑖

𝑑𝑡
= 𝐿𝐶 ∙  

𝑑2𝑉𝐶

𝑑𝑡2
 

 

Substituting the expressions for the current from these relationships into the KVL 

expression, we get the characteristic equation in this form 

𝐿
𝑑2𝑞

𝑑𝑡2
+ 𝑅

𝑑𝑞

𝑑𝑡
+ 

1

𝐶
𝑞 = 0 

𝐿𝑠2 + 𝑅𝑠 + 
1

𝐶
=  0 

has a solution with the two roots. They are: 

 

𝑠1 = −
𝑅

2𝐿
+ √(

𝑅

2𝐿
)
2

− 
1

𝐿𝐶
 

and 

𝑠2 = −
𝑅

2𝐿
− √(

𝑅

2𝐿
)
2

− 
1

𝐿𝐶
 

The current through elements is given by 

𝑖𝑐(𝑡) = 𝐶
𝑑𝑉𝐶(𝑡)

𝑑𝑡
= 𝐶𝑠1𝑉𝑖 (

𝑒𝑠1𝑡

1− 
𝑠1
𝑠2

) + 𝐶𝑠2𝑉𝑖 (
𝑒𝑠2𝑡

1− 
𝑠2
𝑠1

)  



www.manaraa.com

 

110 
 

where S1 and S2 are the roots of the equation, In S1 and S2 expressions under the square 

root sign determines the type of waveform that the circuit produces. Depending on the 

values of R, L, and C, Inmath.com identifies three possible solutions that are presented 

below. [Intmath 2015] 

The Over-damped Case (no oscillations): 

Here R2 > 4L/C, the expression is real and positive and the waveform is given by: 

𝐼(𝑡) = 𝐴𝑒𝑠1𝑡 + 𝐵𝑒𝑠2𝑡 

An over-damped series RLC waveform is shown in Figure A-5. 

 

 

Figure A-5. An Over-damped RLC Waveform [Intmath 2015] 

The Critically Damped Case: 

Here R2 = 4L/C, the roots are real and equal and the waveform is given by: 

𝑖(𝑡) =  (𝐴 + 𝐵𝑡)𝑒−𝑅𝑡/2𝐿 

A critically damped RLC waveform is shown in Figure A-6. 

  



www.manaraa.com

 

111 
 

 

Figure A-6. A Critically damped RLC Waveform [Intmath 2015] 

The Under Damped Case: 

The under-damped case is oscillatory. Here R2 < 4L/C, the roots are imaginary and the 

waveform is given by 

𝑖(𝑡) =  𝑒𝛼𝑡(𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡) 

where 𝛼 =  
𝑅

2𝐿
 is known as the damping coefficient and ω is given by 𝜔 = √

1

𝐿𝐶
− 

𝑅2

4𝐿2.An 

over-damped oscillatory RLC waveform is shown in Figure A-7. 

 

Figure A-7. An Under-damped RLC Waveform [Intmath 2015] 
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Appendix B 

The Finite Difference Time Domain (FDTD) Code 

The FDTD method is one of the most widely used high fidelity computational 

electromagnetic codes. They were used in the GPR system example and again the 

NEMP/BWS example presented in this study. It was first proposed by K.S. Yee. [Yee 

1966] This appendix presents the basic concepts of the FDTD. Further details about the 

FDTD method can be found in works by Taflove and Hagness. [Taflove 1980; Taflove and 

Hagness 2005] 

The FDTD code uses the central difference approximation to generate two of 

Maxwell’s equations in their curl form: Faraday’s and Ampere’s laws. The central 

difference approximation allows derivatives in a partial differential equation to be 

approximated by linear combinations of function values at grid points. Using this 

approximation allows the equations for the electric and magnetic fields to time step through 

a gridded volume in a leap frog manner. The cells in the gridded volume, for the two 

examples presented in this study, are designated by the Cartesian Coordinates of the corner 

of the cell closest to the origin; for example the cell is located at (1,1,1) has three electric 

field values associated with it: Ex(1,1,1), Ey(1,1,1), Ez(1,1,1) and three magnetic fields 

Hx(1,1,1), Hy(1,1,1), Hz(1,1,1). First, all of the electric field values are calculated at points 

in the grid followed by the calculation of all the magnetic fields at similar points. For the 

models and simulations in this study, the computational domain was discretized using a 

rectangular grid resulting in electric and magnetic fields that are calculated in their 

rectangular coordinate system: x direction, y direction and z direction as shown in Figure 

B-1. 
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Figure B-1. Locations of Electric and Magnetic fields in the Yee formulation [Yee 1966] 

Note that the field quantities are calculated at special points that are on the cell’s 

axis lines or faces of the cube. Electric field points are located on the axis lines and 

magnetic fields are calculated at the centers of the grid surface with an angle of 90 degrees 

from that surface. As stated before, during each time step, the electric fields that depend on 

the values of the orthogonal magnetic fields are calculated followed by the calculation of 

the magnetic field that depends on the values of the electric fields. This becomes clearer as 

we look at the equations that make up the FDTD codes. 

FDTD produces the solutions of two of Maxwell’s equations, Faraday’s law and 

Ampere’s law. 

                                       ∇ x 𝐸 ⃗⃗  ⃗ = -μ
𝜕�⃗⃗� 

𝜕𝑡
=  -𝜎𝑀�⃗⃗�                                               (Faraday’s law) 

                                        ∇ x𝐻 ⃗⃗⃗⃗  = ε
𝜕�⃗� 

𝜕𝑡
+  𝜎�⃗�                                                         (Ampere’s law) 

Expanding the vectors for �⃗�  and �⃗⃗�  in the Cartesian coordinate system, these equations 

produce six coupled partial differential equations: 

𝜕𝐻𝑥

𝜕𝑡
=  

1

𝜇
𝑥

 (
𝜕𝐸𝑦

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑦
−  𝜎𝑀𝑥𝐻𝑥) 
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𝜕𝐻𝑦

𝜕𝑡
=  

1

𝜇
𝑦

 (
𝜕𝐸𝑧

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑧
−  𝜎𝑀𝑦𝐻𝑦) 

𝜕𝐻𝑧

𝜕𝑡
=  

1

𝜇
𝑧

 (
𝜕𝐸𝑥

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑥
− 𝜎𝑀𝑧𝐻𝑧) 

𝜕𝐸𝑥

𝜕𝑡
=  

1

𝜀𝑥

 (
𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
− 𝜎𝑥𝐸𝑥) 

𝜕𝐸𝑦

𝜕𝑡
=  

1

𝜀𝑦

 (
𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
− 𝜎𝑦𝐸𝑦) 

𝜕𝐸𝑧

𝜕𝑡
=  

1

𝜀𝑧

 (
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
−  𝜎𝑧𝐸𝑧) 

 

where 𝜀, 𝜎, and 𝜇 are the constituent electrical and magnetic properties of the material 

that occupy the space the cell defines. 

The fields propagate through the gridded problem space at least twice as fast as the 

electromagnetic wave. This is assured by setting the time step to be less than that specified 

by the Courant condition. 

∆𝑡 < 
1

𝑐√
1

∆𝑥2+ 
1

∆𝑦2+ 
1

∆𝑧2

 

Using conventional mathematic notations, the discretized fields may then be written as: 

𝐸𝑥
𝑛  (𝑖 +

1

2
, 𝑗, 𝑘) =  𝐸𝑥  ((𝑖 +

1

2
)∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡)) 

𝐸𝑦
𝑛  (𝑖, 𝑗 +

1

2
, 𝑘) =  𝐸𝑦  (𝑖∆𝑥, (𝑗 +

1

2
)∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡)) 

𝐸𝑧
𝑛  (𝑖, 𝑗, 𝑘 +

1

2
) =  𝐸𝑧  (𝑖∆𝑥, 𝑗∆𝑦, (𝑘 +

1

2
) ∆𝑧, 𝑛∆𝑡)) 

𝐻𝑥

𝑛+
1

2  (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) =  𝐻𝑥 ((𝑖∆𝑥, (𝑗 +

1

2
)∆𝑦, (𝑘 +

1

2
)∆𝑧, (𝑛 +

1

2
)∆𝑡))  

𝐻𝑦

𝑛+
1

2  (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) =  𝐻𝑦 ((𝑖 +

1

2
)∆𝑥, 𝑗∆𝑦, (𝑘 +

1

2
)∆𝑧, (𝑛 +

1

2
)∆𝑡))  
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𝐻𝑧

𝑛+
1

2  (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) =  𝐻𝑧 ((𝑖 +

1

2
)∆𝑥, (𝑗 +

1

2
)∆𝑦, 𝑘∆𝑧, (𝑛 +

1

2
)∆𝑡))  

       with i, j, k being the cell indices 

The fields and their locations are associated with actual Cartesian coordinates (x, y, and z) 

but they are not actually located at these points. The constituent properties of the materials 

are also associated with the coordinate point for each equation. Using the standard 

mathematical finite-difference approximation of a derivative: 

𝜕

𝜕𝑘
𝐹(𝑘 = 𝑛∆𝑘) =  

𝐹 ([𝑛 +
1
2] ∆𝑘) − 𝐹([𝑛 −

1
2] ∆𝑘)

∆𝑘
 

 

Maxwell’s Equations can be rewritten to find the FDTD update equations. This 

form of the equations were programmed into MATLABTM: 

𝐻𝑥

𝑛+
1

2 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) =  𝐻𝑥

𝑛−
1

2  (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) 

+[
∆𝑡

𝜇∆𝑧
] (𝐸𝑦

𝑛(𝑖, 𝑗 +
1

2
, 𝑘 + 1) − 𝐸𝑧

𝑛(𝑖, 𝑗 + 1, 𝑘 +
1

2
)) 

−[
∆𝑡

𝜇∆𝑦
] (𝐸𝑧

𝑛(𝑖, 𝑗 + 1, 𝑘 +
1

2
) − 𝐸𝑧

𝑛(𝑖, 𝑗, 𝑘 +
1

2
)) 

𝐻𝑦

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) =  𝐻𝑦

𝑛−
1

2  (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) 

+[
∆𝑡

𝜇∆𝑥
] (𝐸𝑧

𝑛(𝑖 + 1, 𝑗, 𝑘 +
1

2
) − 𝐸𝑧

𝑛(𝑖, 𝑗 + 1, 𝑘 +
1

2
)) 

−[
∆𝑡

𝜇∆𝑧
] (𝐸𝑥

𝑛(𝑖 +
1

2
, 𝑗, 𝑘 + 1) − 𝐸𝑥

𝑛(𝑖 +
1

2
, 𝑗, 𝑘)) 

𝐻𝑧

𝑛+
1

2 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) =  𝐻𝑧

𝑛−
1

2  (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) 

+[
∆𝑡

𝜇∆𝑦
] (𝐸𝑥

𝑛(𝑖 +
1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑧

𝑛(𝑖 +
1

2
, 𝑗, 𝑘)) 

−[
∆𝑡

𝜇∆𝑧
] (𝐸𝑦

𝑛(𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛(𝑖, 𝑗 +
1

2
, 𝑘)) 
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𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘) =  𝐸𝑥

𝑛  (𝑖 +
1

2
, 𝑗, 𝑘) 

+ [
∆𝑡

𝜀∆𝑦
] (𝐻𝑧

𝑛+
1
2(𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2(𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)) 

− [
∆𝑡

𝜀∆𝑧
] (𝐻𝑦

𝑛+
1
2(𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛(𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)) 

𝐸𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
, 𝑘) =  𝐸𝑦

𝑛  (𝑖, 𝑗 +
1

2
, 𝑘) 

+ [
∆𝑡

𝜀∆𝑧
] (𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)) 

−[
∆𝑡

𝜀∆𝑥
] (𝐻𝑧

𝑛+
1
2(𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑦

𝑛+
1
2(𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘)) 

𝐸𝑧
𝑛+1 (𝑖, 𝑗, 𝑘 +

1

2
) =  𝐸𝑧

𝑛  (𝑖, 𝑗, 𝑘 +
1

2
) 

+[
∆𝑡

𝜀∆𝑥
] (𝐻𝑦

𝑛+
1
2(𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2(𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)) 

−[
∆𝑡

𝜀∆𝑦
] (𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 −

1

2
, 𝑘 +

1

2
)) 

These equations do not include the fields that occur at the boundaries of the problem 

space. Additional equations are used at the boundaries. Some of the more common are 

known as the PEC or tin can boundary condition, the Absorbing Boundary Condition 

(ABC) and the Perfectly Matching Layer (PML). The PEC boundary condition produces 

reflections back into the problem space. The ABC and PML boundary conditions eliminate 

or reduce the reflections at the outer boundary of the problem space. For the examples in 

this study PML boundary conditions were used.  

 




